Mechanical Resonators in the Middle of an Optical Cavity
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The interaction of light with mechanical motion has generated a burst of interest in recent years [1–4] from fundamental questions on the quantum motion of solid objects to novel engineering concepts for sensing and optical devices. This interest was originally inspired by experimental geometries in which a mechanically compliant object acts as the back mirror of Fabry-Perot cavity. In order to maintain a stable, high-finesse cavity with this geometry, the mechanical element’s transverse dimensions must be larger than the photon’s wavelength and its thickness sufficient to create an appreciable reflectivity. This places a lower bound on the mass of the mechanical object, limiting the effect of individual photons. Here we explore a complementary set of geometries in which a nanomechanical element or a very thin membrane is positioned within a high-finesse, rigid optical cavity. This geometry (inspired by the success of cavity quantum electrodynamics experiments with atoms) extends Fabry-Perot-based optomechanics to smaller / sub-wavelength mechanical elements. The added complexity associated with inserting a third (movable) scatterer also affords a new set of opportunities: in addition to reproducing the physics of a two-mirror optomechanical system, several “non-standard” types of linear and non-linear optomechanical couples can be generated. Combined with the diverse set of comparatively lightweight mechanical elements that can be inserted into a cavity, this geometry offers a high degree of optomechanical versatility for potential sensing and quantum information applications.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FAVERO, Ivan, Jack SANKEY, Eva M. WEIG, 2014. Mechanical Resonators in the Middle of an Optical Cavity. In: ASPELMEYER, Markus, ed. and others. Cavity optomechanics : nano- and micromechanical resonators interacting with light. Berlin [u.a.]: Springer, 2014, pp. 83-119. ISBN 978-3-642-55311-0. Available under: doi: 10.1007/978-3-642-55312-7_5BibTex
@incollection{Favero2014Mecha-33210, year={2014}, doi={10.1007/978-3-642-55312-7_5}, title={Mechanical Resonators in the Middle of an Optical Cavity}, isbn={978-3-642-55311-0}, publisher={Springer}, address={Berlin [u.a.]}, booktitle={Cavity optomechanics : nano- and micromechanical resonators interacting with light}, pages={83--119}, editor={Aspelmeyer, Markus}, author={Favero, Ivan and Sankey, Jack and Weig, Eva M.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33210"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">The interaction of light with mechanical motion has generated a burst of interest in recent years [1–4] from fundamental questions on the quantum motion of solid objects to novel engineering concepts for sensing and optical devices. This interest was originally inspired by experimental geometries in which a mechanically compliant object acts as the back mirror of Fabry-Perot cavity. In order to maintain a stable, high-finesse cavity with this geometry, the mechanical element’s transverse dimensions must be larger than the photon’s wavelength and its thickness sufficient to create an appreciable reflectivity. This places a lower bound on the mass of the mechanical object, limiting the effect of individual photons. Here we explore a complementary set of geometries in which a nanomechanical element or a very thin membrane is positioned within a high-finesse, rigid optical cavity. This geometry (inspired by the success of cavity quantum electrodynamics experiments with atoms) extends Fabry-Perot-based optomechanics to smaller / sub-wavelength mechanical elements. The added complexity associated with inserting a third (movable) scatterer also affords a new set of opportunities: in addition to reproducing the physics of a two-mirror optomechanical system, several “non-standard” types of linear and non-linear optomechanical couples can be generated. Combined with the diverse set of comparatively lightweight mechanical elements that can be inserted into a cavity, this geometry offers a high degree of optomechanical versatility for potential sensing and quantum information applications.</dcterms:abstract> <dc:creator>Sankey, Jack</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-03T13:41:35Z</dcterms:available> <dcterms:issued>2014</dcterms:issued> <dc:contributor>Favero, Ivan</dc:contributor> <dc:creator>Weig, Eva M.</dc:creator> <dcterms:title>Mechanical Resonators in the Middle of an Optical Cavity</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33210"/> <dc:creator>Favero, Ivan</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-03T13:41:35Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Weig, Eva M.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Sankey, Jack</dc:contributor> </rdf:Description> </rdf:RDF>