Publikation:

Fine-grained population estimation

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Autor:innen

Bast, Hannah
Weidner, Simon

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

ALI, Mohamed, ed.. Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York, NY: ACM, 2015, 17. ISBN 978-1-4503-3967-4. Available under: doi: 10.1145/2820783.2820828

Zusammenfassung

We show how to estimate population numbers for arbitrary user-defined regions, down to the level of individual buildings. This is important for various applications like evacuation planning, facility placement, or traffic estimation. However, census data with precise population numbers is typically only available at the level of cities, villages, or districts, if at all.
Previous approaches either rely on available census data for already small areas or on sophisticated input data like high resolution aerial images. Our framework uses only freely available data, in particular, OpenStreetMap data. In the OpenStreetMap project, crowd-sourced data is collected about street networks, buildings, places of interest as well as all kind of regions and natural structures world-wide. We use this data to learn three classifiers that are relevant for the population distribution inside an area: residential vs. industrial vs. commercial landuse, inhabited vs. uninhabited buildings, and single-family vs. multi-family houses. Once learned, we can use these classifiers for population estimation even in areas without any census data at all.
Our experiments show good average accuracy (measured as the deviation from actual census data) for rural areas (25%), metropolitan areas (10%), and cities in countries other than that containing the training data (12%).

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

23rd SIGSPATIAL, 3. Nov. 2015 - 6. Nov. 2015, Seattle, Washington, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BAST, Hannah, Sabine STORANDT, Simon WEIDNER, 2015. Fine-grained population estimation. 23rd SIGSPATIAL. Seattle, Washington, USA, 3. Nov. 2015 - 6. Nov. 2015. In: ALI, Mohamed, ed.. Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York, NY: ACM, 2015, 17. ISBN 978-1-4503-3967-4. Available under: doi: 10.1145/2820783.2820828
BibTex
@inproceedings{Bast2015Fineg-43821,
  year={2015},
  doi={10.1145/2820783.2820828},
  title={Fine-grained population estimation},
  isbn={978-1-4503-3967-4},
  publisher={ACM},
  address={New York, NY},
  booktitle={Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems},
  editor={Ali, Mohamed},
  author={Bast, Hannah and Storandt, Sabine and Weidner, Simon},
  note={Article Number: 17}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43821">
    <dc:creator>Bast, Hannah</dc:creator>
    <dcterms:abstract xml:lang="eng">We show how to estimate population numbers for arbitrary user-defined regions, down to the level of individual buildings. This is important for various applications like evacuation planning, facility placement, or traffic estimation. However, census data with precise population numbers is typically only available at the level of cities, villages, or districts, if at all.&lt;br /&gt;Previous approaches either rely on available census data for already small areas or on sophisticated input data like high resolution aerial images. Our framework uses only freely available data, in particular, OpenStreetMap data. In the OpenStreetMap project, crowd-sourced data is collected about street networks, buildings, places of interest as well as all kind of regions and natural structures world-wide. We use this data to learn three classifiers that are relevant for the population distribution inside an area: residential vs. industrial vs. commercial landuse, inhabited vs. uninhabited buildings, and single-family vs. multi-family houses. Once learned, we can use these classifiers for population estimation even in areas without any census data at all.&lt;br /&gt;Our experiments show good average accuracy (measured as the deviation from actual census data) for rural areas (25%), metropolitan areas (10%), and cities in countries other than that containing the training data (12%).</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-11-14T10:22:47Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43821"/>
    <dc:contributor>Bast, Hannah</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-11-14T10:22:47Z</dcterms:available>
    <dc:creator>Weidner, Simon</dc:creator>
    <dc:creator>Storandt, Sabine</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:issued>2015</dcterms:issued>
    <dcterms:title>Fine-grained population estimation</dcterms:title>
    <dc:contributor>Weidner, Simon</dc:contributor>
    <dc:contributor>Storandt, Sabine</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen