The role of molecular oxygen in the iron(III)-promoted oxidative dehydrogenation of amines

Loading...
Thumbnail Image
Date
2015
Authors
Saucedo-Vásquez, Juan Pablo
Sosa-Torres, Martha Elena
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Dalton Transactions ; 44 (2015), 12. - pp. 5510-5519. - ISSN 1477-9226. - eISSN 1477-9234
Abstract
A mechanistic study is presented of the oxidative dehydrogenation of the iron(III) complex [FeIIIL3]3+, 1, (L3 = 1,9-bis(2′-pyridyl)-5-[(ethoxy-2′′-pyridyl)methyl]-2,5,8-triazanonane) in ethanol in the presence of molecular oxygen. The product of the reaction was identified by NMR spectroscopy and X-ray crystallography as the identical monoimine complex [FeIIL4]2+, 2, (L4 = 1,9-bis(2′-pyridyl)-5-[(ethoxy-2′′-pyridyl)methyl]-2,5,8-triazanon-1-ene) also formed under an inert nitrogen atmosphere. Molecular oxygen is an active player in the oxidative dehydrogenation of iron(III) complex 1. Reduced oxygen species, e.g., superoxide, (O2˙) and peroxide (O22−), are formed and undergo single electron transfer reactions with ligand-based radical intermediates. The experimental rate law can be described by the third order rate equation, −d[(FeIIIL3)3+]/dt = kOD[(FeIIIL3)3+][EtO][O2], with kOD = 3.80 ± 0.09 × 107 M−2 s−1 (60 °C, μ = 0.01 M). The reduction O2 → O2˙ represents the rate determining step, with superoxide becoming further reduced to peroxide as shown by a coupled heme catalase assay. In an independent study, with H2O2, replacing O2 as the oxidant, the experimental rate law depended on [H2O2]: −d[(FeIIIL3)3+]/dt = kH2O2[(FeIIIL3)3+][H2O2]), with kH2O2 = 6.25 ± 0.02 × 10−3 M−1 s−1. In contrast to the reaction performed under N2, no kinetic isotope effect (KIE) or general base catalysis was found for the reaction of iron(III) complex 1 with O2. Under N2, two consecutive one-electron oxidation steps of the ligand coupled to proton removal produced the iron(II)-monoimine complex [FeIIL4]2+ and the iron(II)-amine complex [FeIIL3]2+ in a 1 : 1 ratio (disproportionation), with the amine deprotonation being the rate determining step. Notably, the reaction is almost one order of magnitude faster in the presence of O2, with kEtO− = 3.02 ± 0.09 × 105 M−1 s−1 (O2) compared to kEtO− = 4.92 ± 0.01 × 104 M−1 s−1 (N2), documenting the role of molecular oxygen in the dehydrogenation reaction.
Summary in another language
Subject (DDC)
570 Biosciences, Biology
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690SAUCEDO-VÁSQUEZ, Juan Pablo, Peter M. H. KRONECK, Martha Elena SOSA-TORRES, 2015. The role of molecular oxygen in the iron(III)-promoted oxidative dehydrogenation of amines. In: Dalton Transactions. 44(12), pp. 5510-5519. ISSN 1477-9226. eISSN 1477-9234. Available under: doi: 10.1039/C4DT03606A
BibTex
@article{SaucedoVasquez2015molec-31184,
  year={2015},
  doi={10.1039/C4DT03606A},
  title={The role of molecular oxygen in the iron(III)-promoted oxidative dehydrogenation of amines},
  number={12},
  volume={44},
  issn={1477-9226},
  journal={Dalton Transactions},
  pages={5510--5519},
  author={Saucedo-Vásquez, Juan Pablo and Kroneck, Peter M. H. and Sosa-Torres, Martha Elena}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31184">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Sosa-Torres, Martha Elena</dc:contributor>
    <dcterms:title>The role of molecular oxygen in the iron(III)-promoted oxidative dehydrogenation of amines</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-17T13:41:56Z</dc:date>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31184"/>
    <dcterms:issued>2015</dcterms:issued>
    <dc:creator>Kroneck, Peter M. H.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Sosa-Torres, Martha Elena</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Saucedo-Vásquez, Juan Pablo</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31184/1/Saucedo-Vasquez_0-288392.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Kroneck, Peter M. H.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31184/1/Saucedo-Vasquez_0-288392.pdf"/>
    <dcterms:abstract xml:lang="eng">A mechanistic study is presented of the oxidative dehydrogenation of the iron(III) complex [Fe&lt;sup&gt;III&lt;/sup&gt;L&lt;sup&gt;3&lt;/sup&gt;]&lt;sup&gt;3+, &lt;/sup&gt;1, (L&lt;sup&gt;3&lt;/sup&gt; = 1,9-bis(2′-pyridyl)-5-[(ethoxy-2′′-pyridyl)methyl]-2,5,8-triazanonane) in ethanol in the presence of molecular oxygen. The product of the reaction was identified by NMR spectroscopy and X-ray crystallography as the identical monoimine complex [Fe&lt;sup&gt;II&lt;/sup&gt;L&lt;sup&gt;4&lt;/sup&gt;]&lt;sup&gt;2+&lt;/sup&gt;, 2, (L&lt;sup&gt;4&lt;/sup&gt; = 1,9-bis(2′-pyridyl)-5-[(ethoxy-2′′-pyridyl)methyl]-2,5,8-triazanon-1-ene) also formed under an inert nitrogen atmosphere. Molecular oxygen is an active player in the oxidative dehydrogenation of iron(III) complex 1. Reduced oxygen species, e.g., superoxide, (O&lt;sub&gt;2&lt;/sub&gt;˙&lt;sup&gt;−&lt;/sup&gt;) and peroxide (O&lt;sub&gt;2&lt;/sub&gt;&lt;sup&gt;2−&lt;/sup&gt;), are formed and undergo single electron transfer reactions with ligand-based radical intermediates. The experimental rate law can be described by the third order rate equation, −d[(Fe&lt;sup&gt;III&lt;/sup&gt;L&lt;sup&gt;3&lt;/sup&gt;)&lt;sup&gt;3+&lt;/sup&gt;]/dt = k&lt;sub&gt;OD&lt;/sub&gt;[(Fe&lt;sup&gt;III&lt;/sup&gt;L&lt;sup&gt;3&lt;/sup&gt;)&lt;sup&gt;3+&lt;/sup&gt;][EtO&lt;sup&gt;−&lt;/sup&gt;][O&lt;sub&gt;2&lt;/sub&gt;], with k&lt;sub&gt;OD&lt;/sub&gt; = 3.80 ± 0.09 × 107 M&lt;sup&gt;−2&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt; (60 °C, μ = 0.01 M). The reduction O&lt;sub&gt;2&lt;/sub&gt; → O&lt;sub&gt;2&lt;/sub&gt;˙&lt;sup&gt;−&lt;/sup&gt; represents the rate determining step, with superoxide becoming further reduced to peroxide as shown by a coupled heme catalase assay. In an independent study, with H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt;, replacing O&lt;sub&gt;2&lt;/sub&gt; as the oxidant, the experimental rate law depended on [H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt;]: −d[(Fe&lt;sup&gt;III&lt;/sup&gt;L&lt;sup&gt;3&lt;/sup&gt;)&lt;sup&gt;3+&lt;/sup&gt;]/dt = kH&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt;[(Fe&lt;sup&gt;III&lt;/sup&gt;L&lt;sup&gt;3&lt;/sup&gt;)&lt;sup&gt;3+&lt;/sup&gt;][H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt;]), with kH&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; = 6.25 ± 0.02 × 10&lt;sup&gt;−3&lt;/sup&gt; M&lt;sup&gt;−1&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt;. In contrast to the reaction performed under N&lt;sub&gt;2&lt;/sub&gt;, no kinetic isotope effect (KIE) or general base catalysis was found for the reaction of iron(III) complex 1 with O&lt;sub&gt;2&lt;/sub&gt;. Under N&lt;sub&gt;2&lt;/sub&gt;, two consecutive one-electron oxidation steps of the ligand coupled to proton removal produced the iron(II)-monoimine complex [Fe&lt;sup&gt;II&lt;/sup&gt;L&lt;sup&gt;4&lt;/sup&gt;]&lt;sup&gt;2+&lt;/sup&gt; and the iron(II)-amine complex [Fe&lt;sup&gt;II&lt;/sup&gt;L&lt;sup&gt;3&lt;/sup&gt;]&lt;sup&gt;2+&lt;/sup&gt; in a 1 : 1 ratio (disproportionation), with the amine deprotonation being the rate determining step. Notably, the reaction is almost one order of magnitude faster in the presence of O&lt;sub&gt;2&lt;/sub&gt;, with k&lt;sub&gt;EtO&lt;/sub&gt;− = 3.02 ± 0.09 × 10&lt;sup&gt;5&lt;/sup&gt; M&lt;sup&gt;−1&lt;/sup&gt; s&lt;sup&gt;−1 &lt;/sup&gt;(O&lt;sub&gt;2&lt;/sub&gt;) compared to k&lt;sub&gt;EtO&lt;/sub&gt;− = 4.92 ± 0.01 × 104 M&lt;sup&gt;−1&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt; (N&lt;sub&gt;2&lt;/sub&gt;), documenting the role of molecular oxygen in the dehydrogenation reaction.</dcterms:abstract>
    <dc:contributor>Saucedo-Vásquez, Juan Pablo</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-17T13:41:56Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed