StreamSqueeze : A Dynamic Stream Visualization for Monitoring of Event Data

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2012
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
WONG, Pak Chung, ed. and others. Visualization and Data Analysis 2012. SPIE, 2012, pp. 829404. SPIE Proceedings. 8294. Available under: doi: 10.1117/12.912372
Zusammenfassung

While in clear-cut situations automated analytical solution for data streams are already in place, only few visual approaches have been proposed in the literature for exploratory analysis tasks on dynamic information. However, due to the competitive or security-related advantages that real-time information gives in domains such as finance, business or networking, we are convinced that there is a need for exploratory visualization tools for data streams. Under the conditions that new events have higher relevance and that smooth transitions enable traceability of items, we propose a novel dynamic stream visualization called StreamSqueeze. In this technique the degree of interest of recent items is expressed through an increase in size and thus recent events can be shown with more details. The technique has two main benefits: First, the layout algorithm arranges items in several lists of various sizes and optimizes the positions within each list so that the transition of an item from one list to the other triggers least visual changes. Second, the animation scheme ensures that for 50 percent of the time an item has a static screen position where reading is most effective and then continuously shrinks and moves to the its next static position in the subsequent list. To demonstrate the capability of our technique, we apply it to large and high-frequency news and syslog streams and show how it maintains optimal stability of the layout under the conditions given above.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
IS&T/SPIE Electronic Imaging, Burlingame, California, USA
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690MANSMANN, Florian, Milos KRSTAJIC, Fabian FISCHER, Enrico BERTINI, 2012. StreamSqueeze : A Dynamic Stream Visualization for Monitoring of Event Data. IS&T/SPIE Electronic Imaging. Burlingame, California, USA. In: WONG, Pak Chung, ed. and others. Visualization and Data Analysis 2012. SPIE, 2012, pp. 829404. SPIE Proceedings. 8294. Available under: doi: 10.1117/12.912372
BibTex
@inproceedings{Mansmann2012-06-19Strea-22590,
  year={2012},
  doi={10.1117/12.912372},
  title={StreamSqueeze : A Dynamic Stream Visualization for Monitoring of Event Data},
  number={8294},
  publisher={SPIE},
  series={SPIE Proceedings},
  booktitle={Visualization and Data Analysis 2012},
  editor={Wong, Pak Chung},
  author={Mansmann, Florian and Krstajic, Milos and Fischer, Fabian and Bertini, Enrico}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22590">
    <dc:language>eng</dc:language>
    <dc:contributor>Mansmann, Florian</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22590"/>
    <dc:creator>Fischer, Fabian</dc:creator>
    <dcterms:abstract xml:lang="eng">While in clear-cut situations automated analytical solution for data streams are already in place, only few visual approaches have been proposed in the literature for exploratory analysis tasks on dynamic information. However, due to the competitive or security-related advantages that real-time information gives in domains such as finance, business or networking, we are convinced that there is a need for exploratory visualization tools for data streams. Under the conditions that new events have higher relevance and that smooth transitions enable traceability of items, we propose a novel dynamic stream visualization called StreamSqueeze. In this technique the degree of interest of recent items is expressed through an increase in size and thus recent events can be shown with more details. The technique has two main benefits: First, the layout algorithm arranges items in several lists of various sizes and optimizes the positions within each list so that the transition of an item from one list to the other triggers least visual changes. Second, the animation scheme ensures that for 50 percent of the time an item has a static screen position where reading is most effective and then continuously shrinks and moves to the its next static position in the subsequent list. To demonstrate the capability of our technique, we apply it to large and high-frequency news and syslog streams and show how it maintains optimal stability of the layout under the conditions given above.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Krstajic, Milos</dc:creator>
    <dcterms:issued>2012-06-19</dcterms:issued>
    <dc:contributor>Bertini, Enrico</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Krstajic, Milos</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-23T12:02:44Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>StreamSqueeze : A Dynamic Stream Visualization for Monitoring of Event Data</dcterms:title>
    <dc:contributor>Fischer, Fabian</dc:contributor>
    <dc:creator>Bertini, Enrico</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:bibliographicCitation>Visualization and Data Analysis 2012 : 23-25 January 2012, Burlingame, California, United States / Pak Chung Wong ... (eds.). - Bellingham, Wash. : SPIE, 2012. - Artikelnummer: 829404 - ISBN 978-0-8194-8941-8</dcterms:bibliographicCitation>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-23T12:02:44Z</dcterms:available>
    <dc:creator>Mansmann, Florian</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen