Publikation:

Towards Reproducible Research of Event Detection Techniques for Twitter

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

GEIGER, Melanie, ed.. 6th Swiss Conference on Data Science (SDS 2019), Bern, Switzerland, 14 June 2019. Piscataway, NJ: IEEE, 2019, pp. 69-74. ISBN 978-1-72813-105-4. Available under: doi: 10.1109/SDS.2019.000-5

Zusammenfassung

A major challenge in many research areas is reproducibility of implementations, experiments, or evaluations. New data sources and research directions complicate the reproducibility even more. For example, Twitter continues to gain popularity as a source of up-to-date news and information. As a result, numerous event detection techniques have been proposed to cope with the steadily increasing rate and volume of social media data streams. Although some of these works provide their implementation or conduct an evaluation of the proposed technique, it is almost impossible to reproduce their experiments. The main drawback is that Twitter prohibits the release of crawled datasets that are used by researchers in their experiments. In this work, we present a survey of the vast landscape of implementations, experiments, and evaluations presented by the different research works. Furthermore, we propose a reproducibility toolkit including Twistor (Twitter Stream Simulator), which can be used to simulate an artificial Twitter data stream (including events) as input for the experiments or evaluations of event detection techniques. We further present the experimental application of the reproducibility toolkit to state-of-the-art event detection techniques.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

6th Swiss Conference on Data Science (SDS 2019), 14. Juni 2019, Bern, Switzerland
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WEILER, Andreas, Harry SCHILLING, Lukas KIRCHER, Michael GROSSNIKLAUS, 2019. Towards Reproducible Research of Event Detection Techniques for Twitter. 6th Swiss Conference on Data Science (SDS 2019). Bern, Switzerland, 14. Juni 2019. In: GEIGER, Melanie, ed.. 6th Swiss Conference on Data Science (SDS 2019), Bern, Switzerland, 14 June 2019. Piscataway, NJ: IEEE, 2019, pp. 69-74. ISBN 978-1-72813-105-4. Available under: doi: 10.1109/SDS.2019.000-5
BibTex
@inproceedings{Weiler2019-06Towar-46766,
  year={2019},
  doi={10.1109/SDS.2019.000-5},
  title={Towards Reproducible Research of Event Detection Techniques for Twitter},
  isbn={978-1-72813-105-4},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={6th Swiss Conference on Data Science (SDS 2019), Bern, Switzerland, 14 June 2019},
  pages={69--74},
  editor={Geiger, Melanie},
  author={Weiler, Andreas and Schilling, Harry and Kircher, Lukas and Grossniklaus, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46766">
    <dc:creator>Weiler, Andreas</dc:creator>
    <dc:contributor>Schilling, Harry</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46766"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Weiler, Andreas</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-02T12:30:57Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2019-06</dcterms:issued>
    <dc:contributor>Kircher, Lukas</dc:contributor>
    <dc:creator>Kircher, Lukas</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Towards Reproducible Research of Event Detection Techniques for Twitter</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Grossniklaus, Michael</dc:contributor>
    <dcterms:abstract xml:lang="eng">A major challenge in many research areas is reproducibility of implementations, experiments, or evaluations. New data sources and research directions complicate the reproducibility even more. For example, Twitter continues to gain popularity as a source of up-to-date news and information. As a result, numerous event detection techniques have been proposed to cope with the steadily increasing rate and volume of social media data streams. Although some of these works provide their implementation or conduct an evaluation of the proposed technique, it is almost impossible to reproduce their experiments. The main drawback is that Twitter prohibits the release of crawled datasets that are used by researchers in their experiments. In this work, we present a survey of the vast landscape of implementations, experiments, and evaluations presented by the different research works. Furthermore, we propose a reproducibility toolkit including Twistor (Twitter Stream Simulator), which can be used to simulate an artificial Twitter data stream (including events) as input for the experiments or evaluations of event detection techniques. We further present the experimental application of the reproducibility toolkit to state-of-the-art event detection techniques.</dcterms:abstract>
    <dc:creator>Grossniklaus, Michael</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-02T12:30:57Z</dcterms:available>
    <dc:creator>Schilling, Harry</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen