Publikation: Fish can save energy via proprioceptive sensing
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Fish have evolved diverse and robust locomotive strategies to swim efficiently in complex fluid environments. However, we know little, if anything, about how these strategies can be achieved. Although most studies suggest that fish rely on the lateral line system to sense local flow and optimise body undulation, recent work has shown that fish are still able to gain benefits from the local flow even with the lateral line impaired. In this paper, we hypothesise that fish can save energy by extracting vortices shed from their neighbours using only simple proprioceptive sensing with the caudal fin. We tested this hypothesis on both computational and robotic fish by synthesising a central pattern generator (CPG) with feedback, proprioceptive sensing, and reinforcement learning. The CPG controller adjusts the body undulation after receiving feedback from the proprioceptive sensing signal, decoded via reinforcement learning. In our study, we consider potential proprioceptive sensing inputs to consist of low-dimensional signals (e.g. perceived forces) detected from the flow. With simulations on a computational robot and experiments on a robotic fish swimming in unknown dynamic flows, we show that the simple proprioceptive sensing is sufficient to optimise the body undulation to save energy, without any input from the lateral line. Our results reveal a new sensory-motor mechanism in schooling fish and shed new light on the strategy of control for robotic fish swimming in complex flows with high efficiency.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LI, Liang, Danshi LIU, Jian DENG, Matthew J. LUTZ, Guangming XIE, 2021. Fish can save energy via proprioceptive sensing. In: Bioinspiration & biomimetics. Institute of Physics Publishing (IOP). 2021, 16(5), 056013. ISSN 1748-3182. eISSN 1748-3190. Available under: doi: 10.1088/1748-3190/ac165eBibTex
@article{Li2021-08-16energ-54731, year={2021}, doi={10.1088/1748-3190/ac165e}, title={Fish can save energy via proprioceptive sensing}, number={5}, volume={16}, issn={1748-3182}, journal={Bioinspiration & biomimetics}, author={Li, Liang and Liu, Danshi and Deng, Jian and Lutz, Matthew J. and Xie, Guangming}, note={Article Number: 056013} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54731"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:language>eng</dc:language> <dcterms:issued>2021-08-16</dcterms:issued> <dc:creator>Deng, Jian</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Deng, Jian</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54731"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Li, Liang</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-26T08:06:10Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Xie, Guangming</dc:contributor> <dc:creator>Li, Liang</dc:creator> <dc:creator>Xie, Guangming</dc:creator> <dcterms:title>Fish can save energy via proprioceptive sensing</dcterms:title> <dc:contributor>Liu, Danshi</dc:contributor> <dc:creator>Lutz, Matthew J.</dc:creator> <dc:contributor>Lutz, Matthew J.</dc:contributor> <dc:creator>Liu, Danshi</dc:creator> <dc:rights>terms-of-use</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54731/1/Li_2-in3gsbj885gu6.pdf"/> <dcterms:abstract xml:lang="eng">Fish have evolved diverse and robust locomotive strategies to swim efficiently in complex fluid environments. However, we know little, if anything, about how these strategies can be achieved. Although most studies suggest that fish rely on the lateral line system to sense local flow and optimise body undulation, recent work has shown that fish are still able to gain benefits from the local flow even with the lateral line impaired. In this paper, we hypothesise that fish can save energy by extracting vortices shed from their neighbours using only simple proprioceptive sensing with the caudal fin. We tested this hypothesis on both computational and robotic fish by synthesising a central pattern generator (CPG) with feedback, proprioceptive sensing, and reinforcement learning. The CPG controller adjusts the body undulation after receiving feedback from the proprioceptive sensing signal, decoded via reinforcement learning. In our study, we consider potential proprioceptive sensing inputs to consist of low-dimensional signals (e.g. perceived forces) detected from the flow. With simulations on a computational robot and experiments on a robotic fish swimming in unknown dynamic flows, we show that the simple proprioceptive sensing is sufficient to optimise the body undulation to save energy, without any input from the lateral line. Our results reveal a new sensory-motor mechanism in schooling fish and shed new light on the strategy of control for robotic fish swimming in complex flows with high efficiency.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54731/1/Li_2-in3gsbj885gu6.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-26T08:06:10Z</dcterms:available> </rdf:Description> </rdf:RDF>