How Displaced Migratory Birds Could Use Volatile Atmospheric Compounds to Find Their Migratory Corridor : A Test Using a Particle Dispersion Model

Loading...
Thumbnail Image
Date
2016
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Frontiers in Behavioral Neuroscience ; 10 (2016). - 175. - eISSN 1662-5153
Abstract
Olfaction represents an important sensory modality for navigation of both homing pigeons and wild birds. Experimental evidence in homing pigeons showed that airborne volatile compounds carried by the winds at the home area are learned in association with wind directions. When displaced, pigeons obtain information on the direction of their displacement using local odors at the release site. Recently, the role of olfactory cues in navigation has been reported also for wild birds during migration. However, the question whether wild birds develop an olfactory navigational map similar to that described in homing pigeons or, alternatively, exploit the distribution of volatile compounds in different manner for reaching the goal is still an open question. Using an interdisciplinary approach, we evaluate the possibilities of reconstructing spatio-temporally explicit aerosol dispersion at large spatial scales using the particle dispersion model FLEXPART. By combining atmospheric information with particle dispersion models, atmospheric scientists predict the dispersion of pollutants for example, after nuclear fallouts or volcanic eruptions or wildfires, or in retrospect reconstruct the origin of emissions such as aerosols. Using simple assumptions, we reconstructed the putative origin of aerosols traveling to the location of migrating birds. We use the model to test whether the putative odor plume could have originated from an important stopover site. If the migrating birds knew this site and the associated plume from previous journeys, the odor could contribute to the reorientation towards the migratory corridor, as suggested for the model scenario in displaced Lesser black-backed gulls migrating from Northern Europe into Africa.
Summary in another language
Subject (DDC)
570 Biosciences, Biology
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690SAFI, Kamran, Anna GAGLIARDO, Martin WIKELSKI, Bart KRANSTAUBER, 2016. How Displaced Migratory Birds Could Use Volatile Atmospheric Compounds to Find Their Migratory Corridor : A Test Using a Particle Dispersion Model. In: Frontiers in Behavioral Neuroscience. 10, 175. eISSN 1662-5153. Available under: doi: 10.3389/fnbeh.2016.00175
BibTex
@article{Safi2016Displ-37553,
  year={2016},
  doi={10.3389/fnbeh.2016.00175},
  title={How Displaced Migratory Birds Could Use Volatile Atmospheric Compounds to Find Their Migratory Corridor : A Test Using a Particle Dispersion Model},
  volume={10},
  journal={Frontiers in Behavioral Neuroscience},
  author={Safi, Kamran and Gagliardo, Anna and Wikelski, Martin and Kranstauber, Bart},
  note={Article Number: 175}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37553">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Kranstauber, Bart</dc:contributor>
    <dc:creator>Kranstauber, Bart</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37553"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Gagliardo, Anna</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>How Displaced Migratory Birds Could Use Volatile Atmospheric Compounds to Find Their Migratory Corridor : A Test Using a Particle Dispersion Model</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-17T10:04:39Z</dc:date>
    <dcterms:issued>2016</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37553/3/Safi_0-372497.pdf"/>
    <dc:contributor>Safi, Kamran</dc:contributor>
    <dc:creator>Gagliardo, Anna</dc:creator>
    <dc:contributor>Wikelski, Martin</dc:contributor>
    <dcterms:abstract xml:lang="eng">Olfaction represents an important sensory modality for navigation of both homing pigeons and wild birds. Experimental evidence in homing pigeons showed that airborne volatile compounds carried by the winds at the home area are learned in association with wind directions. When displaced, pigeons obtain information on the direction of their displacement using local odors at the release site. Recently, the role of olfactory cues in navigation has been reported also for wild birds during migration. However, the question whether wild birds develop an olfactory navigational map similar to that described in homing pigeons or, alternatively, exploit the distribution of volatile compounds in different manner for reaching the goal is still an open question. Using an interdisciplinary approach, we evaluate the possibilities of reconstructing spatio-temporally explicit aerosol dispersion at large spatial scales using the particle dispersion model FLEXPART. By combining atmospheric information with particle dispersion models, atmospheric scientists predict the dispersion of pollutants for example, after nuclear fallouts or volcanic eruptions or wildfires, or in retrospect reconstruct the origin of emissions such as aerosols. Using simple assumptions, we reconstructed the putative origin of aerosols traveling to the location of migrating birds. We use the model to test whether the putative odor plume could have originated from an important stopover site. If the migrating birds knew this site and the associated plume from previous journeys, the odor could contribute to the reorientation towards the migratory corridor, as suggested for the model scenario in displaced Lesser black-backed gulls migrating from Northern Europe into Africa.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Wikelski, Martin</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37553/3/Safi_0-372497.pdf"/>
    <dc:creator>Safi, Kamran</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-17T10:04:39Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:rights>Attribution 4.0 International</dc:rights>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed