Publikation:

The importance of correcting for sampling bias in MaxEnt species distribution models

Lade...
Vorschaubild

Dateien

Kramer-Schadt_2-iwlkiq6jp0nl5.pdf
Kramer-Schadt_2-iwlkiq6jp0nl5.pdfGröße: 1.35 MBDownloads: 2470

Datum

2013

Autor:innen

Kramer-Schadt, Stephanie
Niedballa, Jürgen
Pilgrim, John D.
Schröder, Boris
Lindenborn, Jana
Reinfelder, Vanessa
Stillfried, Milena
Heckmann, Ilja
Wilting, Andreas
et al.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Diversity and Distributions. Wiley-Blackwell - STM. 2013, 19(11), pp. 1366-1379. ISSN 1366-9516. eISSN 1472-4642. Available under: doi: 10.1111/ddi.12096

Zusammenfassung

Aim:
Advancement in ecological methods predicting species distributions is a crucial precondition for deriving sound management actions. Maximum entropy (MaxEnt) models are a popular tool to predict species distributions, as they are considered able to cope well with sparse, irregularly sampled data and minor location errors. Although a fundamental assumption of MaxEnt is that the entire area of interest has been systematically sampled, in practice, MaxEnt models are usually built from occurrence records that are spatially biased towards better‐surveyed areas. Two common, yet not compared, strategies to cope with uneven sampling effort are spatial filtering of occurrence data and background manipulation using environmental data with the same spatial bias as occurrence data. We tested these strategies using simulated data and a recently collated dataset on Malay civet Viverra tangalunga in Borneo.

Location:
Borneo, Southeast Asia.

Methods:
We collated 504 occurrence records of Malay civets from Borneo of which 291 records were from 2001 to 2011 and used them in the MaxEnt analysis (baseline scenario) together with 25 environmental input variables. We simulated datasets for two virtual species (similar to a range‐restricted highland and a lowland species) using the same number of records for model building. As occurrence records were biased towards north‐eastern Borneo, we investigated the efficacy of spatial filtering versus background manipulation to reduce overprediction or underprediction in specific areas.

Results:
Spatial filtering minimized omission errors (false negatives) and commission errors (false positives). We recommend that when sample size is insufficient to allow spatial filtering, manipulation of the background dataset is preferable to not correcting for sampling bias, although predictions were comparatively weak and commission errors increased.

Main Conclusions:
We conclude that a substantial improvement in the quality of model predictions can be achieved if uneven sampling effort is taken into account, thereby improving the efficacy of species conservation planning.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Borneo, carnivora, conservation planning, ecological niche modelling, maximum entropy (MaxEnt), sampling bias, Southeast Asia, species distribution modelling, viverridae

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KRAMER-SCHADT, Stephanie, Jürgen NIEDBALLA, John D. PILGRIM, Boris SCHRÖDER, Jana LINDENBORN, Vanessa REINFELDER, Milena STILLFRIED, Ilja HECKMANN, Anne K. SCHARF, Andreas WILTING, 2013. The importance of correcting for sampling bias in MaxEnt species distribution models. In: Diversity and Distributions. Wiley-Blackwell - STM. 2013, 19(11), pp. 1366-1379. ISSN 1366-9516. eISSN 1472-4642. Available under: doi: 10.1111/ddi.12096
BibTex
@article{KramerSchadt2013impor-53376,
  year={2013},
  doi={10.1111/ddi.12096},
  title={The importance of correcting for sampling bias in MaxEnt species distribution models},
  number={11},
  volume={19},
  issn={1366-9516},
  journal={Diversity and Distributions},
  pages={1366--1379},
  author={Kramer-Schadt, Stephanie and Niedballa, Jürgen and Pilgrim, John D. and Schröder, Boris and Lindenborn, Jana and Reinfelder, Vanessa and Stillfried, Milena and Heckmann, Ilja and Scharf, Anne K. and Wilting, Andreas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53376">
    <dc:contributor>Pilgrim, John D.</dc:contributor>
    <dc:contributor>Kramer-Schadt, Stephanie</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Wilting, Andreas</dc:contributor>
    <dcterms:title>The importance of correcting for sampling bias in MaxEnt species distribution models</dcterms:title>
    <dc:contributor>Niedballa, Jürgen</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53376"/>
    <dc:creator>Reinfelder, Vanessa</dc:creator>
    <dcterms:abstract xml:lang="eng">Aim:&lt;br /&gt;Advancement in ecological methods predicting species distributions is a crucial precondition for deriving sound management actions. Maximum entropy (MaxEnt) models are a popular tool to predict species distributions, as they are considered able to cope well with sparse, irregularly sampled data and minor location errors. Although a fundamental assumption of MaxEnt is that the entire area of interest has been systematically sampled, in practice, MaxEnt models are usually built from occurrence records that are spatially biased towards better‐surveyed areas. Two common, yet not compared, strategies to cope with uneven sampling effort are spatial filtering of occurrence data and background manipulation using environmental data with the same spatial bias as occurrence data. We tested these strategies using simulated data and a recently collated dataset on Malay civet Viverra tangalunga in Borneo.&lt;br /&gt;&lt;br /&gt;Location:&lt;br /&gt;Borneo, Southeast Asia.&lt;br /&gt;&lt;br /&gt;Methods:&lt;br /&gt;We collated 504 occurrence records of Malay civets from Borneo of which 291 records were from 2001 to 2011 and used them in the MaxEnt analysis (baseline scenario) together with 25 environmental input variables. We simulated datasets for two virtual species (similar to a range‐restricted highland and a lowland species) using the same number of records for model building. As occurrence records were biased towards north‐eastern Borneo, we investigated the efficacy of spatial filtering versus background manipulation to reduce overprediction or underprediction in specific areas.&lt;br /&gt;&lt;br /&gt;Results:&lt;br /&gt;Spatial filtering minimized omission errors (false negatives) and commission errors (false positives). We recommend that when sample size is insufficient to allow spatial filtering, manipulation of the background dataset is preferable to not correcting for sampling bias, although predictions were comparatively weak and commission errors increased.&lt;br /&gt;&lt;br /&gt;Main Conclusions:&lt;br /&gt;We conclude that a substantial improvement in the quality of model predictions can be achieved if uneven sampling effort is taken into account, thereby improving the efficacy of species conservation planning.</dcterms:abstract>
    <dc:contributor>Reinfelder, Vanessa</dc:contributor>
    <dc:creator>Heckmann, Ilja</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53376/3/Kramer-Schadt_2-iwlkiq6jp0nl5.pdf"/>
    <dc:creator>Schröder, Boris</dc:creator>
    <dc:contributor>Lindenborn, Jana</dc:contributor>
    <dc:creator>Niedballa, Jürgen</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Stillfried, Milena</dc:contributor>
    <dc:contributor>Scharf, Anne K.</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Wilting, Andreas</dc:creator>
    <dc:creator>Pilgrim, John D.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-14T10:16:04Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53376/3/Kramer-Schadt_2-iwlkiq6jp0nl5.pdf"/>
    <dc:creator>Kramer-Schadt, Stephanie</dc:creator>
    <dc:creator>Lindenborn, Jana</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Heckmann, Ilja</dc:contributor>
    <dcterms:issued>2013</dcterms:issued>
    <dc:contributor>Schröder, Boris</dc:contributor>
    <dc:creator>Stillfried, Milena</dc:creator>
    <dc:creator>Scharf, Anne K.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-14T10:16:04Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen