Shape-driven Coordinate Ordering for Star Glyph Sets via Reinforcement Learning
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a neural optimization model trained with reinforcement learning to solve the coordinate ordering problem for sets of star glyphs. Given a set of star glyphs associated to multiple class labels, we propose to use shape context descriptors to measure the perceptual distance between pairs of glyphs, and use the derived silhouette coefficient to measure the perception of class separability within the entire set. To find the optimal coordinate order for the given set, we train a neural network using reinforcement learning to reward orderings with high silhouette coefficients. The network consists of an encoder and a decoder with an attention mechanism. The encoder employs a recurrent neural network (RNN) to encode input shape and class information, while the decoder together with the attention mechanism employs another RNN to output a sequence with the new coordinate order. This allows us also to find good coordinate orderings for RadViz plots. In addition, we introduce a neural network to efficiently estimate the similarity between shape context descriptors, which allows to speed up the computation of silhouette coefficients and thus the training of the axis ordering network. Two user studies demonstrate that the orders provided by our method are preferred by users for perceiving class separation. We tested our model on different settings to show its robustness and generalization abilities and demonstrate that it allows to order input sets with unseen data size, data dimension, or number of classes.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HU, Ruizhen, Bin CHEN, Juzhan XU, Oliver VAN KAICK, Oliver DEUSSEN, Hui HUANG, 2021. Shape-driven Coordinate Ordering for Star Glyph Sets via Reinforcement Learning. In: IEEE Transactions on Visualization and Computer Graphics. IEEE. 2021, 27(6), pp. 3034-3047. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2021.3052167BibTex
@article{Hu2021-06Shape-52937, year={2021}, doi={10.1109/TVCG.2021.3052167}, title={Shape-driven Coordinate Ordering for Star Glyph Sets via Reinforcement Learning}, number={6}, volume={27}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={3034--3047}, author={Hu, Ruizhen and Chen, Bin and Xu, Juzhan and Van Kaick, Oliver and Deussen, Oliver and Huang, Hui} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52937"> <dc:contributor>Hu, Ruizhen</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Chen, Bin</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Van Kaick, Oliver</dc:contributor> <dc:creator>Van Kaick, Oliver</dc:creator> <dc:creator>Chen, Bin</dc:creator> <dcterms:issued>2021-06</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-19T12:27:26Z</dc:date> <dc:creator>Hu, Ruizhen</dc:creator> <dc:contributor>Deussen, Oliver</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-19T12:27:26Z</dcterms:available> <dcterms:abstract xml:lang="eng">We present a neural optimization model trained with reinforcement learning to solve the coordinate ordering problem for sets of star glyphs. Given a set of star glyphs associated to multiple class labels, we propose to use shape context descriptors to measure the perceptual distance between pairs of glyphs, and use the derived silhouette coefficient to measure the perception of class separability within the entire set. To find the optimal coordinate order for the given set, we train a neural network using reinforcement learning to reward orderings with high silhouette coefficients. The network consists of an encoder and a decoder with an attention mechanism. The encoder employs a recurrent neural network (RNN) to encode input shape and class information, while the decoder together with the attention mechanism employs another RNN to output a sequence with the new coordinate order. This allows us also to find good coordinate orderings for RadViz plots. In addition, we introduce a neural network to efficiently estimate the similarity between shape context descriptors, which allows to speed up the computation of silhouette coefficients and thus the training of the axis ordering network. Two user studies demonstrate that the orders provided by our method are preferred by users for perceiving class separation. We tested our model on different settings to show its robustness and generalization abilities and demonstrate that it allows to order input sets with unseen data size, data dimension, or number of classes.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Deussen, Oliver</dc:creator> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Xu, Juzhan</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52937"/> <dcterms:title>Shape-driven Coordinate Ordering for Star Glyph Sets via Reinforcement Learning</dcterms:title> <dc:contributor>Xu, Juzhan</dc:contributor> <dc:creator>Huang, Hui</dc:creator> <dc:contributor>Huang, Hui</dc:contributor> </rdf:Description> </rdf:RDF>