Excess air in groundwater as a potential indicator of past environmental changes
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Dissolved noble gases in groundwater are used to reconstruct paleotemperature, but also yield information about "excess air", a component of dissolved gases in excess of solubility equilibrium, derived from dissolution of trapped air in the ground. A good characterization of the excess air component is necessary not only to obtain reliable noble gas temperatures, but also to investigate the potential of excess air as a proxy for past environmental conditions. Two excess air related quantities can be derived from groundwater noble gas data sets: The initial air/water ratio and the pressure exerted on the entrapped air. Under recharge conditions typical for many aquifers, the excess of dissolved gases, expressed by the relative Ne excess ¨Ne, is mainly determined by the hydrostatic pressure on the entrapped air. Thus, we suggest that ¨Ne is essentially a measure of the amplitude of water table fluctuations in the recharge area. Comparing data sets from three aquifers in temperate, humid latitudes and three aquifers in tropical, semi-arid regions, we find that ¨Ne is generally higher in the tropical aquifers, possibly related to larger water table fluctuations in these aquifers characterized by deep unsaturated zones. Whereas ¨Ne shows little temporal variation in the mid-latitude aquifers, there is a strong signal of higher ¨Ne in the paleowaters of the tropical aquifers as compared to water recharged under modern climate conditions. This finding may indicate a higher variability of recharge in the past at the studied tropical sites.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
AESCHBACH-HERTIG, Werner, Urs BEYERLE, Johannes HOLOCHER, Frank PEETERS, Rolf KIPFER, 2002. Excess air in groundwater as a potential indicator of past environmental changes. Study of environmental change using isotope techniques. Vienna, 23. Apr. 2001 - 27. Apr. 2001. In: INTERNATIONAL ATOMIC ENERGY AGENCY, , ed.. Study of environmental change using isotope techniques : proceedings ; international conference held in Vienna, 23 - 27 April 2001. Vienna, 2002, pp. 174-183. C&S papers series, International Atomic Energy Agency. 13,P. ISBN 92-0-116402-5BibTex
@inproceedings{AeschbachHertig2002Exces-24396, year={2002}, title={Excess air in groundwater as a potential indicator of past environmental changes}, number={13,P}, isbn={92-0-116402-5}, address={Vienna}, series={C&S papers series, International Atomic Energy Agency}, booktitle={Study of environmental change using isotope techniques : proceedings ; international conference held in Vienna, 23 - 27 April 2001}, pages={174--183}, editor={International Atomic Energy Agency}, author={Aeschbach-Hertig, Werner and Beyerle, Urs and Holocher, Johannes and Peeters, Frank and Kipfer, Rolf} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24396"> <dc:creator>Holocher, Johannes</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2002</dcterms:issued> <dc:creator>Beyerle, Urs</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24396"/> <dc:creator>Aeschbach-Hertig, Werner</dc:creator> <dc:contributor>Aeschbach-Hertig, Werner</dc:contributor> <dc:contributor>Peeters, Frank</dc:contributor> <dcterms:bibliographicCitation>Dissolved noble gases in groundwater are used to reconstruct paleotemperature, but also yield information about 'excess air', a component of dissolved gases in excess of solubility equilibrium, derived from dissolution of trapped air in the ground. A good characterization of the excess air component is necessary not only to obtain reliable noble gas temperatures, but also to investigate the potential of excess air as a proxy for past environmental conditions. Two excess air related quantities can be derived from groundwater noble gas data sets: The initial air/water ratio and the pressure exerted on the entrapped air. Under recharge conditions typical for many aquifers, the excess of dissolved gases, expressed by the relative Ne excess ΔNe, is mainly determined by the hydrostatic pressure on the entrapped air. Thus, we suggest that ΔNe is essentially a measure of the amplitude of water table fluctuations in the recharge area. Comparing data sets from three aquifers in temperate, humid latitudes and three aquifers in tropical, semi-arid regions, we find that ΔNe is generally higher in the tropical aquifers, possibly related to larger water table fluctuations in these aquifers characterized by deep unsaturated zones. Whereas ΔNe shows little temporal variation in the mid-latitude aquifers, there is a strong signal of higher ΔNe in the paleowaters of the tropical aquifers as compared to water recharged under modern climate conditions. This finding may indicate a higher variability of recharge in the past at the studied tropical sites.</dcterms:bibliographicCitation> <dcterms:abstract xml:lang="eng">Dissolved noble gases in groundwater are used to reconstruct paleotemperature, but also
 yield information about "excess air", a component of dissolved gases in excess of solubility
 equilibrium, derived from dissolution of trapped air in the ground. A good characterization of the
 excess air component is necessary not only to obtain reliable noble gas temperatures, but also to
 investigate the potential of excess air as a proxy for past environmental conditions. Two excess air
 related quantities can be derived from groundwater noble gas data sets: The initial air/water ratio and
 the pressure exerted on the entrapped air. Under recharge conditions typical for many aquifers, the
 excess of dissolved gases, expressed by the relative Ne excess ¨Ne, is mainly determined by the
 hydrostatic pressure on the entrapped air. Thus, we suggest that ¨Ne is essentially a measure of the
 amplitude of water table fluctuations in the recharge area. Comparing data sets from three aquifers in
 temperate, humid latitudes and three aquifers in tropical, semi-arid regions, we find that ¨Ne is
 generally higher in the tropical aquifers, possibly related to larger water table fluctuations in these
 aquifers characterized by deep unsaturated zones. Whereas ¨Ne shows little temporal variation in the
 mid-latitude aquifers, there is a strong signal of higher ¨Ne in the paleowaters of the tropical aquifers
 as compared to water recharged under modern climate conditions. This finding may indicate a higher
 variability of recharge in the past at the studied tropical sites.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Kipfer, Rolf</dc:creator> <dc:contributor>Holocher, Johannes</dc:contributor> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24396/2/Aeschbach_243968.pdf"/> <dc:contributor>Kipfer, Rolf</dc:contributor> <dc:contributor>Beyerle, Urs</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-19T09:09:06Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24396/2/Aeschbach_243968.pdf"/> <dc:creator>Peeters, Frank</dc:creator> <dcterms:title>Excess air in groundwater as a potential indicator of past environmental changes</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-19T09:09:06Z</dcterms:available> </rdf:Description> </rdf:RDF>