Use of ciliate and phytoplankton taxonomic composition for the estimation of eicosapentaenoic acid concentration in lakes

Loading...
Thumbnail Image
Date
2012
Authors
Hartwich, Melanie
Gaedke, Ursula
Wacker, Alexander
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Freshwater Biology ; 57 (2012), 7. - pp. 1385-1398. - ISSN 0046-5070
Abstract
1. The polyunsaturated fatty acid eicosapentaenoic acid (EPA) plays an important role in aquatic food webs, in particular at the primary producer–consumer interface where keystone species such as daphnids may be constrained by its dietary availability. Such constraints and their seasonal and interannual changes may be detected by continuous measurements of EPA concentrations. However, such EPA measurements became common only during the last two decades, whereas long-term data sets on plankton biomass are available for many well-studied lakes. Here, we test
whether it is possible to estimate EPA concentrations from abiotic variables (light and temperature) and the biomass of prey organisms (e.g. ciliates, diatoms and cryptophytes) that
potentially provide EPA for consumers.
2. We used multiple linear regression to relate size- and taxonomically resolved plankton biomass data and measurements of temperature and light intensity to directly measured EPA concentrations in Lake Constance during a whole year. First, we tested the predictability of EPA
concentrations from the biomass of EPA-rich organisms (diatoms, cryptophytes and ciliates). Secondly, we included the variables mean temperature and mean light intensity over the sampling depth (0–20 m) and depth (0–8 and 8–20 m) as factors in our model to check for large-scale seasonal- and depth-dependent effects on EPA concentrations. In a third step, we included the deviations of light and temperature from mean values in our model to allow for their potential influence on the biochemical composition of plankton organisms. We used the Akaike Information Criterion to determine the best models.
3. All approaches supported our proposition that the biomasses of specific plankton groups are variables from which seston EPA concentrations can be derived. The importance of ciliates as an EPA source in the seston was emphasised by their high weight in our models, although ciliates are neglected in most studies that link fatty acids to seston taxonomic composition. The large-scale seasonal variability of light intensity and its interaction with diatom biomass were significant predictors of EPA concentrations. The deviation of temperature from mean values, accounting for a depth-dependent effect on EPA concentrations, and its interaction with ciliate biomass were also variables with high predictive power.
4. The best models from the first and second approaches were validated with measurements of EPA concentrations from another year (1997). The estimation with the best model including only biomass explained 80%, and the best model from the second approach including mean temperature and depth explained 87% of the variability in EPA concentrations in 1997.
5. We show that it is possible to predict EPA concentrations reliably from plankton biomass, while the inclusion of abiotic factors led to results that were only partly consistent with expectationsfrom laboratory studies. Our approach of including biotic predictors should be transferable to other systems and allow checking for biochemical constraints on primary consumers.
Summary in another language
Subject (DDC)
570 Biosciences, Biology
Keywords
ciliates,diatoms,eicosapentaenoic acid,light,temperature
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690HARTWICH, Melanie, Dietmar STRAILE, Ursula GAEDKE, Alexander WACKER, 2012. Use of ciliate and phytoplankton taxonomic composition for the estimation of eicosapentaenoic acid concentration in lakes. In: Freshwater Biology. 57(7), pp. 1385-1398. ISSN 0046-5070. Available under: doi: 10.1111/j.1365-2427.2012.02799.x
BibTex
@article{Hartwich2012cilia-19468,
  year={2012},
  doi={10.1111/j.1365-2427.2012.02799.x},
  title={Use of ciliate and phytoplankton taxonomic composition for the estimation of eicosapentaenoic acid concentration in lakes},
  number={7},
  volume={57},
  issn={0046-5070},
  journal={Freshwater Biology},
  pages={1385--1398},
  author={Hartwich, Melanie and Straile, Dietmar and Gaedke, Ursula and Wacker, Alexander}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19468">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19468/2/Straile_Use%20of%20ciliate.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Straile, Dietmar</dc:creator>
    <dc:creator>Hartwich, Melanie</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:bibliographicCitation>First publ. in: Freshwater Biology ; 57 (2012), 7. - pp. 1385–1398</dcterms:bibliographicCitation>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19468/2/Straile_Use%20of%20ciliate.pdf"/>
    <dc:contributor>Straile, Dietmar</dc:contributor>
    <dc:creator>Gaedke, Ursula</dc:creator>
    <dcterms:title>Use of ciliate and phytoplankton taxonomic composition for the estimation of eicosapentaenoic acid concentration in lakes</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2012</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Hartwich, Melanie</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19468"/>
    <dc:contributor>Gaedke, Ursula</dc:contributor>
    <dcterms:abstract xml:lang="eng">1. The polyunsaturated fatty acid eicosapentaenoic acid (EPA) plays an important role in aquatic food webs, in particular at the primary producer–consumer interface where keystone species such as daphnids may be constrained by its dietary availability. Such constraints and their seasonal and interannual changes may be detected by continuous measurements of EPA concentrations. However, such EPA measurements became common only during the last two decades, whereas long-term data sets on plankton biomass are available for many well-studied lakes. Here, we test&lt;br /&gt;whether it is possible to estimate EPA concentrations from abiotic variables (light and temperature) and the biomass of prey organisms (e.g. ciliates, diatoms and cryptophytes) that&lt;br /&gt;potentially provide EPA for consumers.&lt;br /&gt;2. We used multiple linear regression to relate size- and taxonomically resolved plankton biomass data and measurements of temperature and light intensity to directly measured EPA concentrations in Lake Constance during a whole year. First, we tested the predictability of EPA&lt;br /&gt;concentrations from the biomass of EPA-rich organisms (diatoms, cryptophytes and ciliates). Secondly, we included the variables mean temperature and mean light intensity over the sampling depth (0–20 m) and depth (0–8 and 8–20 m) as factors in our model to check for large-scale seasonal- and depth-dependent effects on EPA concentrations. In a third step, we included the deviations of light and temperature from mean values in our model to allow for their potential influence on the biochemical composition of plankton organisms. We used the Akaike Information Criterion to determine the best models.&lt;br /&gt;3. All approaches supported our proposition that the biomasses of specific plankton groups are variables from which seston EPA concentrations can be derived. The importance of ciliates as an EPA source in the seston was emphasised by their high weight in our models, although ciliates are neglected in most studies that link fatty acids to seston taxonomic composition. The large-scale seasonal variability of light intensity and its interaction with diatom biomass were significant predictors of EPA concentrations. The deviation of temperature from mean values, accounting for a depth-dependent effect on EPA concentrations, and its interaction with ciliate biomass were also variables with high predictive power.&lt;br /&gt;4. The best models from the first and second approaches were validated with measurements of EPA concentrations from another year (1997). The estimation with the best model including only biomass explained 80%, and the best model from the second approach including mean temperature and depth explained 87% of the variability in EPA concentrations in 1997.&lt;br /&gt;5. We show that it is possible to predict EPA concentrations reliably from plankton biomass, while the inclusion of abiotic factors led to results that were only partly consistent with expectationsfrom laboratory studies. Our approach of including biotic predictors should be transferable to other systems and allow checking for biochemical constraints on primary consumers.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-31T22:25:05Z</dcterms:available>
    <dc:creator>Wacker, Alexander</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-06-14T09:06:39Z</dc:date>
    <dc:contributor>Wacker, Alexander</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed