A Clustering Approach to a Major-Accident Data Set : Analysis of Key Interactions to Minimise Human Errors

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2015
Autor:innen
Moura, Raphael
Beer, Michael
Kruse, Rudolf
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
2015 IEEE Symposium Series on Computational Intelligence. Piscataway, New Jersey, USA: IEEE, 2015, pp. 1838-1843. ISBN 978-1-4799-7560-0. Available under: doi: 10.1109/SSCI.2015.256
Zusammenfassung

This work aims to scrutinise a proprietary dataset containing major accidents occurred in high-technology facilities, in order to disclose relevant features and indicate a path to the recognition of the genesis of human errors. The application of a tailored Hierarchical Agglomerative Clustering method will provide means to understand data and identify key similarities among accidents and significant interfaces between human factors, the organisational environment and the technology. Conclusions to improve the human performance based on the clustering results are then discussed.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
2015 IEEE Symposium Series on Computational Intelligence (SSCI), 7. Dez. 2015 - 10. Dez. 2015, Cape Town, South Africa
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690MOURA, Raphael, Christoph DOELL, Michael BEER, Rudolf KRUSE, 2015. A Clustering Approach to a Major-Accident Data Set : Analysis of Key Interactions to Minimise Human Errors. 2015 IEEE Symposium Series on Computational Intelligence (SSCI). Cape Town, South Africa, 7. Dez. 2015 - 10. Dez. 2015. In: 2015 IEEE Symposium Series on Computational Intelligence. Piscataway, New Jersey, USA: IEEE, 2015, pp. 1838-1843. ISBN 978-1-4799-7560-0. Available under: doi: 10.1109/SSCI.2015.256
BibTex
@inproceedings{Moura2015Clust-44703,
  year={2015},
  doi={10.1109/SSCI.2015.256},
  title={A Clustering Approach to a Major-Accident Data Set : Analysis of Key Interactions to Minimise Human Errors},
  isbn={978-1-4799-7560-0},
  publisher={IEEE},
  address={Piscataway, New Jersey, USA},
  booktitle={2015 IEEE Symposium Series on Computational Intelligence},
  pages={1838--1843},
  author={Moura, Raphael and Doell, Christoph and Beer, Michael and Kruse, Rudolf}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44703">
    <dc:creator>Moura, Raphael</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44703"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T16:51:48Z</dc:date>
    <dcterms:issued>2015</dcterms:issued>
    <dc:creator>Doell, Christoph</dc:creator>
    <dc:creator>Beer, Michael</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">This work aims to scrutinise a proprietary dataset containing major accidents occurred in high-technology facilities, in order to disclose relevant features and indicate a path to the recognition of the genesis of human errors. The application of a tailored Hierarchical Agglomerative Clustering method will provide means to understand data and identify key similarities among accidents and significant interfaces between human factors, the organisational environment and the technology. Conclusions to improve the human performance based on the clustering results are then discussed.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T16:51:48Z</dcterms:available>
    <dc:contributor>Moura, Raphael</dc:contributor>
    <dc:contributor>Doell, Christoph</dc:contributor>
    <dcterms:title>A Clustering Approach to a Major-Accident Data Set : Analysis of Key Interactions to Minimise Human Errors</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Beer, Michael</dc:contributor>
    <dc:creator>Kruse, Rudolf</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Kruse, Rudolf</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen