Control of Recombination Pathways in TiO2 Nanowire Hybrid Solar Cells Using Sn4+ Dopants
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Hybrid nanostructures have shown increasing potential as a replacement for Si solar cells due to the availability of low-cost material combinations. However, up to now, hybrid solar cells, where photon absorption occurs in a semiconducting polymer and charge separation occurs at a metal oxide-polymer interface, show limited efficiencies. One limitation is caused by a relative low charge carrier mobility in the metal oxide. Here we addressed this issue and describe the use of a Sn:TiO2|TiO2 core–shell nanowire array to increase the charge-carrier mobility in the core of the nanowires while decreasing the charge-carrier recombination at the metal oxide–polymer interface due to fast electron extraction from this interface, driven by a cascaded conduction band energy from shell to core of the nanowires. These doped cores with an undoped shell structure resulted in impressive efficiency improvement in hybrid solar cells of 33% over the reference TiO2-based device. Additionally, this device structure resulted in a 17% increase in recombination lifetimes based on both photovoltage decay measurements and impedance spectroscopy. Recombination mechanisms are proposed for the core and core–shell systems to highlight the various effects of the Sn4+-doped TiO2 nanowire arrays. Doped core–shell structures have the potential for application in the hybrid-type devices without the limitations that are seen with the current dual metal oxide structures due to the seamless interface of the metal oxide host for direct transport of the electrons into the highly mobile core material.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DORMAN, James A., Jonas WEICKERT, Julian B. REINDL, Martin PUTNIK, Andreas WISNET, Matthias NOEBELS, Christina SCHEU, Lukas SCHMIDT-MENDE, 2014. Control of Recombination Pathways in TiO2 Nanowire Hybrid Solar Cells Using Sn4+ Dopants. In: The Journal of Physical Chemistry C. 2014, 118(30), pp. 16672-16679. ISSN 1932-7447. eISSN 1932-7455. Available under: doi: 10.1021/jp412650rBibTex
@article{Dorman2014Contr-28959, year={2014}, doi={10.1021/jp412650r}, title={Control of Recombination Pathways in TiO<sub>2</sub> Nanowire Hybrid Solar Cells Using Sn<sup>4+</sup> Dopants}, number={30}, volume={118}, issn={1932-7447}, journal={The Journal of Physical Chemistry C}, pages={16672--16679}, author={Dorman, James A. and Weickert, Jonas and Reindl, Julian B. and Putnik, Martin and Wisnet, Andreas and Noebels, Matthias and Scheu, Christina and Schmidt-Mende, Lukas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28959"> <dc:creator>Weickert, Jonas</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:creator>Dorman, James A.</dc:creator> <dc:creator>Putnik, Martin</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-09-11T11:33:31Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Control of Recombination Pathways in TiO<sub>2</sub> Nanowire Hybrid Solar Cells Using Sn<sup>4+</sup> Dopants</dcterms:title> <dc:contributor>Wisnet, Andreas</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Schmidt-Mende, Lukas</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-09-11T11:33:31Z</dcterms:available> <dc:creator>Scheu, Christina</dc:creator> <dc:creator>Schmidt-Mende, Lukas</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/28959"/> <dc:contributor>Putnik, Martin</dc:contributor> <dcterms:issued>2014</dcterms:issued> <dc:creator>Wisnet, Andreas</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:bibliographicCitation>The journal of physical chemistry / c ; 118 (2014), 30. - S. 16672-16679</dcterms:bibliographicCitation> <dc:contributor>Weickert, Jonas</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Reindl, Julian B.</dc:creator> <dcterms:abstract xml:lang="eng">Hybrid nanostructures have shown increasing potential as a replacement for Si solar cells due to the availability of low-cost material combinations. However, up to now, hybrid solar cells, where photon absorption occurs in a semiconducting polymer and charge separation occurs at a metal oxide-polymer interface, show limited efficiencies. One limitation is caused by a relative low charge carrier mobility in the metal oxide. Here we addressed this issue and describe the use of a Sn:TiO<sub>2</sub>|TiO<sub>2</sub> core–shell nanowire array to increase the charge-carrier mobility in the core of the nanowires while decreasing the charge-carrier recombination at the metal oxide–polymer interface due to fast electron extraction from this interface, driven by a cascaded conduction band energy from shell to core of the nanowires. These doped cores with an undoped shell structure resulted in impressive efficiency improvement in hybrid solar cells of 33% over the reference TiO<sub>2</sub>-based device. Additionally, this device structure resulted in a 17% increase in recombination lifetimes based on both photovoltage decay measurements and impedance spectroscopy. Recombination mechanisms are proposed for the core and core–shell systems to highlight the various effects of the Sn<sup>4+</sup>-doped TiO<sub>2</sub> nanowire arrays. Doped core–shell structures have the potential for application in the hybrid-type devices without the limitations that are seen with the current dual metal oxide structures due to the seamless interface of the metal oxide host for direct transport of the electrons into the highly mobile core material.</dcterms:abstract> <dc:contributor>Dorman, James A.</dc:contributor> <dc:contributor>Noebels, Matthias</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:contributor>Reindl, Julian B.</dc:contributor> <dc:contributor>Scheu, Christina</dc:contributor> <dc:creator>Noebels, Matthias</dc:creator> </rdf:Description> </rdf:RDF>