Publikation: Lessons on Combining Topology and Geography : Visual Analytics for Electrical Outage Management
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Outage management in electrical networks is a complex task for operators and requires comprehensive overviews of the topology. At the same time valuable information for detecting the root cause may have geographical context such as digging activities or falling trees. Consequently, vendors of state-of-the-art SCADA systems started to integrate this valuable information source as well. However, in todays systems both views are separated, requiring operators to mentally connect the geographical and topological information. The wish of operators is to provide a comprehensive combination of both spaces in a single view. However, how to project geographical elements into the topology to support the workflow of real operators is yet unclear. In this paper, we present a design study for an interactive visualization system that provides a comprehensive overview for power grid operators. It provides full coverage of both spaces in order to measure how real operators make use of the geographical information. It bypasses the projection problem by interactive brushing-and-linking to support associative analysis. We extracted the mental-model of domain experts in real use cases and found a general bias source in sequential analysis of two spaces. We contribute our problem and task abstraction, lessons learned, and implications for future research.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JÄGER, Alexander, Sebastian MITTELSTÄDT, Daniela OELKE, Sonja SANDER, Axel PLATZ, Gies BOUWMAN, Daniel A. KEIM, 2016. Lessons on Combining Topology and Geography : Visual Analytics for Electrical Outage Management. EuroVA16. Groningen, the Netherlands, 6. Juni 2016 - 10. Juni 2016. In: ANDRIENKO, Lessons, ed., Michael SEDLMAIR, ed.. EuroVis Workshop on Visual Analytics. The Eurographics Association, 2016, 1116. ISBN 978-3-03868-016-1. Available under: doi: 10.2312/eurova.20161116BibTex
@inproceedings{Jager2016Lesso-38109, year={2016}, doi={10.2312/eurova.20161116}, title={Lessons on Combining Topology and Geography : Visual Analytics for Electrical Outage Management}, isbn={978-3-03868-016-1}, publisher={The Eurographics Association}, booktitle={EuroVis Workshop on Visual Analytics}, editor={Andrienko, Lessons and Sedlmair, Michael}, author={Jäger, Alexander and Mittelstädt, Sebastian and Oelke, Daniela and Sander, Sonja and Platz, Axel and Bouwman, Gies and Keim, Daniel A.}, note={Article Number: 1116} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38109"> <dc:creator>Oelke, Daniela</dc:creator> <dc:creator>Platz, Axel</dc:creator> <dcterms:title>Lessons on Combining Topology and Geography : Visual Analytics for Electrical Outage Management</dcterms:title> <dc:contributor>Sander, Sonja</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38109/1/Jaeger_2-jx5i3sipmeb42.pdf"/> <dc:creator>Jäger, Alexander</dc:creator> <dc:creator>Mittelstädt, Sebastian</dc:creator> <dc:contributor>Platz, Axel</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Mittelstädt, Sebastian</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2016</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-23T08:32:46Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Sander, Sonja</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38109/1/Jaeger_2-jx5i3sipmeb42.pdf"/> <dc:contributor>Oelke, Daniela</dc:contributor> <dc:contributor>Bouwman, Gies</dc:contributor> <dc:creator>Bouwman, Gies</dc:creator> <dc:contributor>Jäger, Alexander</dc:contributor> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-23T08:32:46Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38109"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:abstract xml:lang="eng">Outage management in electrical networks is a complex task for operators and requires comprehensive overviews of the topology. At the same time valuable information for detecting the root cause may have geographical context such as digging activities or falling trees. Consequently, vendors of state-of-the-art SCADA systems started to integrate this valuable information source as well. However, in todays systems both views are separated, requiring operators to mentally connect the geographical and topological information. The wish of operators is to provide a comprehensive combination of both spaces in a single view. However, how to project geographical elements into the topology to support the workflow of real operators is yet unclear. In this paper, we present a design study for an interactive visualization system that provides a comprehensive overview for power grid operators. It provides full coverage of both spaces in order to measure how real operators make use of the geographical information. It bypasses the projection problem by interactive brushing-and-linking to support associative analysis. We extracted the mental-model of domain experts in real use cases and found a general bias source in sequential analysis of two spaces. We contribute our problem and task abstraction, lessons learned, and implications for future research.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>