Lessons on Combining Topology and Geography : Visual Analytics for Electrical Outage Management

Lade...
Vorschaubild
Dateien
Jaeger_2-jx5i3sipmeb42.pdf
Jaeger_2-jx5i3sipmeb42.pdfGröße: 139.93 KBDownloads: 60
Datum
2016
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Angaben zur Forschungsförderung (Freitext)
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
ANDRIENKO, Lessons, ed., Michael SEDLMAIR, ed.. EuroVis Workshop on Visual Analytics. The Eurographics Association, 2016, 1116. ISBN 978-3-03868-016-1. Available under: doi: 10.2312/eurova.20161116
Zusammenfassung

Outage management in electrical networks is a complex task for operators and requires comprehensive overviews of the topology. At the same time valuable information for detecting the root cause may have geographical context such as digging activities or falling trees. Consequently, vendors of state-of-the-art SCADA systems started to integrate this valuable information source as well. However, in todays systems both views are separated, requiring operators to mentally connect the geographical and topological information. The wish of operators is to provide a comprehensive combination of both spaces in a single view. However, how to project geographical elements into the topology to support the workflow of real operators is yet unclear. In this paper, we present a design study for an interactive visualization system that provides a comprehensive overview for power grid operators. It provides full coverage of both spaces in order to measure how real operators make use of the geographical information. It bypasses the projection problem by interactive brushing-and-linking to support associative analysis. We extracted the mental-model of domain experts in real use cases and found a general bias source in sequential analysis of two spaces. We contribute our problem and task abstraction, lessons learned, and implications for future research.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
EuroVA16, 6. Juni 2016 - 10. Juni 2016, Groningen, the Netherlands
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690JÄGER, Alexander, Sebastian MITTELSTÄDT, Daniela OELKE, Sonja SANDER, Axel PLATZ, Gies BOUWMAN, Daniel A. KEIM, 2016. Lessons on Combining Topology and Geography : Visual Analytics for Electrical Outage Management. EuroVA16. Groningen, the Netherlands, 6. Juni 2016 - 10. Juni 2016. In: ANDRIENKO, Lessons, ed., Michael SEDLMAIR, ed.. EuroVis Workshop on Visual Analytics. The Eurographics Association, 2016, 1116. ISBN 978-3-03868-016-1. Available under: doi: 10.2312/eurova.20161116
BibTex
@inproceedings{Jager2016Lesso-38109,
  year={2016},
  doi={10.2312/eurova.20161116},
  title={Lessons on Combining Topology and Geography : Visual Analytics for Electrical Outage Management},
  isbn={978-3-03868-016-1},
  publisher={The Eurographics Association},
  booktitle={EuroVis Workshop on Visual Analytics},
  editor={Andrienko, Lessons and Sedlmair, Michael},
  author={Jäger, Alexander and Mittelstädt, Sebastian and Oelke, Daniela and Sander, Sonja and Platz, Axel and Bouwman, Gies and Keim, Daniel A.},
  note={Article Number: 1116}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38109">
    <dc:creator>Oelke, Daniela</dc:creator>
    <dc:creator>Platz, Axel</dc:creator>
    <dcterms:title>Lessons on Combining Topology and Geography : Visual Analytics for Electrical Outage Management</dcterms:title>
    <dc:contributor>Sander, Sonja</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38109/1/Jaeger_2-jx5i3sipmeb42.pdf"/>
    <dc:creator>Jäger, Alexander</dc:creator>
    <dc:creator>Mittelstädt, Sebastian</dc:creator>
    <dc:contributor>Platz, Axel</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Mittelstädt, Sebastian</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2016</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-23T08:32:46Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Sander, Sonja</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38109/1/Jaeger_2-jx5i3sipmeb42.pdf"/>
    <dc:contributor>Oelke, Daniela</dc:contributor>
    <dc:contributor>Bouwman, Gies</dc:contributor>
    <dc:creator>Bouwman, Gies</dc:creator>
    <dc:contributor>Jäger, Alexander</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-23T08:32:46Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38109"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:abstract xml:lang="eng">Outage management in electrical networks is a complex task for operators and requires comprehensive overviews of the topology. At the same time valuable information for detecting the root cause may have geographical context such as digging activities or falling trees. Consequently, vendors of state-of-the-art SCADA systems started to integrate this valuable information source as well. However, in todays systems both views are separated, requiring operators to mentally connect the geographical and topological information. The wish of operators is to provide a comprehensive combination of both spaces in a single view. However, how to project geographical elements into the topology to support the workflow of real operators is yet unclear. In this paper, we present a design study for an interactive visualization system that provides a comprehensive overview for power grid operators. It provides full coverage of both spaces in order to measure how real operators make use of the geographical information. It bypasses the projection problem by interactive brushing-and-linking to support associative analysis. We extracted the mental-model of domain experts in real use cases and found a general bias source in sequential analysis of two spaces. We contribute our problem and task abstraction, lessons learned, and implications for future research.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen