Publikation:

Analysis of publically available skin sensitization data from REACH registrations 2008-2014

Lade...
Vorschaubild

Dateien

Luechtefeld_0-365935.pdf
Luechtefeld_0-365935.pdfGröße: 2.77 MBDownloads: 383

Datum

2016

Autor:innen

Luechtefeld, Thomas
Maertens, Alexandra
Russo, Daniel P.
Zhu, Hao

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

European Union (EU): 681002

Projekt

EUToxRisk21
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Alternatives to Animal Experimentation : ALTEX. 2016, 33(2), pp. 135-148. ISSN 0946-7785. eISSN 1868-8551. Available under: doi: 10.14573/altex.1510055

Zusammenfassung

The public data on skin sensitization from REACH registrations already included 19,111 studies on skin sensitization in December 2014, making it the largest repository of such data so far (1,470 substances with mouse LLNA, 2,787 with GPMT, 762 with both in vivo and in vitro and 139 with only in vitro data). 21% were classified as sensitizers. The extracted skin sensitization data was analyzed to identify relationships in skin sensitization guidelines, visualize structural relationships of sensitizers, and build models to predict sensitization. A chemical with molecular weight > 500 Da is generally considered non-sensitizing owing to low bioavailability, but 49 sensitizing chemicals with a molecular weight > 500 Da were found. A chemical similarity map was produced using PubChem's 2D Tanimoto similarity metric and Gephi force layout visualization. Nine clusters of chemicals were identified by Blondel's module recognition algorithm revealing wide module-dependent variation. Approximately 31% of mapped chemicals are Michaell's acceptors but alone this does not imply skin sensitization. A simple sensitization model using molecular weight and five ToxTree structural alerts showed a balanced accuracy of 65.8% (specificity 80.4%, sensitivity 51.4%), demonstrating that structural alerts have information value. A simple variant of k-nearest neighbors outperformed the ToxTree approach even at 75% similarity threshold (82% balanced accuracy at 0.95 threshold). At higher thresholds, the balanced accuracy increased. Lower similarity thresholds decrease sensitivity faster than specificity. This analysis scopes the landscape of chemical skin sensitization, demonstrating the value of large public datasets for health hazard prediction.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690LUECHTEFELD, Thomas, Alexandra MAERTENS, Daniel P. RUSSO, Costanza ROVIDA, Hao ZHU, Thomas HARTUNG, 2016. Analysis of publically available skin sensitization data from REACH registrations 2008-2014. In: Alternatives to Animal Experimentation : ALTEX. 2016, 33(2), pp. 135-148. ISSN 0946-7785. eISSN 1868-8551. Available under: doi: 10.14573/altex.1510055
BibTex
@article{Luechtefeld2016Analy-35666,
  year={2016},
  doi={10.14573/altex.1510055},
  title={Analysis of publically available skin sensitization data from REACH registrations 2008-2014},
  number={2},
  volume={33},
  issn={0946-7785},
  journal={Alternatives to Animal Experimentation : ALTEX},
  pages={135--148},
  author={Luechtefeld, Thomas and Maertens, Alexandra and Russo, Daniel P. and Rovida, Costanza and Zhu, Hao and Hartung, Thomas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35666">
    <dcterms:title>Analysis of publically available skin sensitization data from REACH registrations 2008-2014</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/35666/3/Luechtefeld_0-365935.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-10-18T08:23:40Z</dc:date>
    <dc:contributor>Rovida, Costanza</dc:contributor>
    <dc:creator>Maertens, Alexandra</dc:creator>
    <dc:creator>Luechtefeld, Thomas</dc:creator>
    <dc:creator>Rovida, Costanza</dc:creator>
    <dcterms:issued>2016</dcterms:issued>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Zhu, Hao</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/35666/3/Luechtefeld_0-365935.pdf"/>
    <dc:contributor>Russo, Daniel P.</dc:contributor>
    <dc:contributor>Hartung, Thomas</dc:contributor>
    <dc:contributor>Zhu, Hao</dc:contributor>
    <dc:contributor>Maertens, Alexandra</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-10-18T08:23:40Z</dcterms:available>
    <dc:creator>Russo, Daniel P.</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/35666"/>
    <dc:creator>Hartung, Thomas</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">The public data on skin sensitization from REACH registrations already included 19,111 studies on skin sensitization in December 2014, making it the largest repository of such data so far (1,470 substances with mouse LLNA, 2,787 with GPMT, 762 with both in vivo and in vitro and 139 with only in vitro data). 21% were classified as sensitizers. The extracted skin sensitization data was analyzed to identify relationships in skin sensitization guidelines, visualize structural relationships of sensitizers, and build models to predict sensitization. A chemical with molecular weight &gt; 500 Da is generally considered non-sensitizing owing to low bioavailability, but 49 sensitizing chemicals with a molecular weight &gt; 500 Da were found. A chemical similarity map was produced using PubChem's 2D Tanimoto similarity metric and Gephi force layout visualization. Nine clusters of chemicals were identified by Blondel's module recognition algorithm revealing wide module-dependent variation. Approximately 31% of mapped chemicals are Michaell's acceptors but alone this does not imply skin sensitization. A simple sensitization model using molecular weight and five ToxTree structural alerts showed a balanced accuracy of 65.8% (specificity 80.4%, sensitivity 51.4%), demonstrating that structural alerts have information value. A simple variant of k-nearest neighbors outperformed the ToxTree approach even at 75% similarity threshold (82% balanced accuracy at 0.95 threshold). At higher thresholds, the balanced accuracy increased. Lower similarity thresholds decrease sensitivity faster than specificity. This analysis scopes the landscape of chemical skin sensitization, demonstrating the value of large public datasets for health hazard prediction.</dcterms:abstract>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Luechtefeld, Thomas</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen