Widening : using parallel resources to improve model quality

Lade...
Vorschaubild
Dateien
Berthold_2-jy2is72qj7cn0.PDF
Berthold_2-jy2is72qj7cn0.PDFGröße: 1.14 MBDownloads: 33
Datum
2021
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Data Mining and Knowledge Discovery. Springer. 2021, 35(4), pp. 1258-1286. ISSN 1384-5810. eISSN 1573-756X. Available under: doi: 10.1007/s10618-021-00749-5
Zusammenfassung

This paper provides a unified description of Widening, a framework for the use of parallel (or otherwise abundant) computational resources to improve model quality. We discuss different theoretical approaches to Widening with and without consideration of diversity. We then soften some of the underlying constraints so that Widening can be implemented in real world algorithms. We summarize earlier experimental results demonstrating the potential impact as well as promising implementation strategies before concluding with a survey of related work.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Widening, Machine learning, Data mining, Algorithms, Parallelization
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690BERTHOLD, Michael R., Alexander FILLBRUNN, Arno SIEBES, 2021. Widening : using parallel resources to improve model quality. In: Data Mining and Knowledge Discovery. Springer. 2021, 35(4), pp. 1258-1286. ISSN 1384-5810. eISSN 1573-756X. Available under: doi: 10.1007/s10618-021-00749-5
BibTex
@article{Berthold2021-07Widen-53453,
  year={2021},
  doi={10.1007/s10618-021-00749-5},
  title={Widening : using parallel resources to improve model quality},
  number={4},
  volume={35},
  issn={1384-5810},
  journal={Data Mining and Knowledge Discovery},
  pages={1258--1286},
  author={Berthold, Michael R. and Fillbrunn, Alexander and Siebes, Arno}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53453">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-22T14:23:40Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53453"/>
    <dc:contributor>Siebes, Arno</dc:contributor>
    <dc:creator>Siebes, Arno</dc:creator>
    <dc:contributor>Fillbrunn, Alexander</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-22T14:23:40Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53453/1/Berthold_2-jy2is72qj7cn0.PDF"/>
    <dcterms:title>Widening : using parallel resources to improve model quality</dcterms:title>
    <dc:creator>Fillbrunn, Alexander</dc:creator>
    <dcterms:abstract xml:lang="eng">This paper provides a unified description of Widening, a framework for the use of parallel (or otherwise abundant) computational resources to improve model quality. We discuss different theoretical approaches to Widening with and without consideration of diversity. We then soften some of the underlying constraints so that Widening can be implemented in real world algorithms. We summarize earlier experimental results demonstrating the potential impact as well as promising implementation strategies before concluding with a survey of related work.</dcterms:abstract>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53453/1/Berthold_2-jy2is72qj7cn0.PDF"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:language>eng</dc:language>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:issued>2021-07</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen