Publikation:

Widening : using parallel resources to improve model quality

Lade...
Vorschaubild

Dateien

Berthold_2-jy2is72qj7cn0.PDF
Berthold_2-jy2is72qj7cn0.PDFGröße: 1.14 MBDownloads: 37

Datum

2021

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Data Mining and Knowledge Discovery. Springer. 2021, 35(4), pp. 1258-1286. ISSN 1384-5810. eISSN 1573-756X. Available under: doi: 10.1007/s10618-021-00749-5

Zusammenfassung

This paper provides a unified description of Widening, a framework for the use of parallel (or otherwise abundant) computational resources to improve model quality. We discuss different theoretical approaches to Widening with and without consideration of diversity. We then soften some of the underlying constraints so that Widening can be implemented in real world algorithms. We summarize earlier experimental results demonstrating the potential impact as well as promising implementation strategies before concluding with a survey of related work.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Widening, Machine learning, Data mining, Algorithms, Parallelization

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BERTHOLD, Michael R., Alexander FILLBRUNN, Arno SIEBES, 2021. Widening : using parallel resources to improve model quality. In: Data Mining and Knowledge Discovery. Springer. 2021, 35(4), pp. 1258-1286. ISSN 1384-5810. eISSN 1573-756X. Available under: doi: 10.1007/s10618-021-00749-5
BibTex
@article{Berthold2021-07Widen-53453,
  year={2021},
  doi={10.1007/s10618-021-00749-5},
  title={Widening : using parallel resources to improve model quality},
  number={4},
  volume={35},
  issn={1384-5810},
  journal={Data Mining and Knowledge Discovery},
  pages={1258--1286},
  author={Berthold, Michael R. and Fillbrunn, Alexander and Siebes, Arno}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53453">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-22T14:23:40Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53453"/>
    <dc:contributor>Siebes, Arno</dc:contributor>
    <dc:creator>Siebes, Arno</dc:creator>
    <dc:contributor>Fillbrunn, Alexander</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-22T14:23:40Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53453/1/Berthold_2-jy2is72qj7cn0.PDF"/>
    <dcterms:title>Widening : using parallel resources to improve model quality</dcterms:title>
    <dc:creator>Fillbrunn, Alexander</dc:creator>
    <dcterms:abstract xml:lang="eng">This paper provides a unified description of Widening, a framework for the use of parallel (or otherwise abundant) computational resources to improve model quality. We discuss different theoretical approaches to Widening with and without consideration of diversity. We then soften some of the underlying constraints so that Widening can be implemented in real world algorithms. We summarize earlier experimental results demonstrating the potential impact as well as promising implementation strategies before concluding with a survey of related work.</dcterms:abstract>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53453/1/Berthold_2-jy2is72qj7cn0.PDF"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:language>eng</dc:language>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:issued>2021-07</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen