Optimal nonlinear information processing capacity in delay-based reservoir computers

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2015
Autor:innen
Henriques, Julie
Larger, Laurent
Ortega, Juan-Pablo
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Scientific reports. 2015, 5(1), 12858. eISSN 2045-2322. Available under: doi: 10.1038/srep12858
Zusammenfassung

Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690GRIGORYEVA, Lyudmila, Julie HENRIQUES, Laurent LARGER, Juan-Pablo ORTEGA, 2015. Optimal nonlinear information processing capacity in delay-based reservoir computers. In: Scientific reports. 2015, 5(1), 12858. eISSN 2045-2322. Available under: doi: 10.1038/srep12858
BibTex
@article{Grigoryeva2015-09-11Optim-40578,
  year={2015},
  doi={10.1038/srep12858},
  title={Optimal nonlinear information processing capacity in delay-based reservoir computers},
  number={1},
  volume={5},
  journal={Scientific reports},
  author={Grigoryeva, Lyudmila and Henriques, Julie and Larger, Laurent and Ortega, Juan-Pablo},
  note={Article Number: 12858}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40578">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40578"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Ortega, Juan-Pablo</dc:contributor>
    <dc:creator>Henriques, Julie</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Larger, Laurent</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40578/1/Grigoryeva_2--jzygexrh5vvh1.pdf"/>
    <dc:contributor>Grigoryeva, Lyudmila</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-10T13:33:34Z</dcterms:available>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2015-09-11</dcterms:issued>
    <dc:creator>Ortega, Juan-Pablo</dc:creator>
    <dc:creator>Grigoryeva, Lyudmila</dc:creator>
    <dcterms:abstract xml:lang="eng">Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.</dcterms:abstract>
    <dcterms:title>Optimal nonlinear information processing capacity in delay-based reservoir computers</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40578/1/Grigoryeva_2--jzygexrh5vvh1.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Larger, Laurent</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-10T13:33:34Z</dc:date>
    <dc:contributor>Henriques, Julie</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen