Optimal nonlinear information processing capacity in delay-based reservoir computers
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GRIGORYEVA, Lyudmila, Julie HENRIQUES, Laurent LARGER, Juan-Pablo ORTEGA, 2015. Optimal nonlinear information processing capacity in delay-based reservoir computers. In: Scientific reports. 2015, 5(1), 12858. eISSN 2045-2322. Available under: doi: 10.1038/srep12858BibTex
@article{Grigoryeva2015-09-11Optim-40578, year={2015}, doi={10.1038/srep12858}, title={Optimal nonlinear information processing capacity in delay-based reservoir computers}, number={1}, volume={5}, journal={Scientific reports}, author={Grigoryeva, Lyudmila and Henriques, Julie and Larger, Laurent and Ortega, Juan-Pablo}, note={Article Number: 12858} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40578"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40578"/> <dc:rights>Attribution 4.0 International</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Ortega, Juan-Pablo</dc:contributor> <dc:creator>Henriques, Julie</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Larger, Laurent</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40578/1/Grigoryeva_2--jzygexrh5vvh1.pdf"/> <dc:contributor>Grigoryeva, Lyudmila</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-10T13:33:34Z</dcterms:available> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2015-09-11</dcterms:issued> <dc:creator>Ortega, Juan-Pablo</dc:creator> <dc:creator>Grigoryeva, Lyudmila</dc:creator> <dcterms:abstract xml:lang="eng">Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.</dcterms:abstract> <dcterms:title>Optimal nonlinear information processing capacity in delay-based reservoir computers</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40578/1/Grigoryeva_2--jzygexrh5vvh1.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dc:contributor>Larger, Laurent</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-10T13:33:34Z</dc:date> <dc:contributor>Henriques, Julie</dc:contributor> </rdf:Description> </rdf:RDF>