Publikation:

Probability metrics to calibrate stochastic chemical kinetics

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2010

Autor:innen

Koeppl, Heinz
Setti, Gianluca
Pelet, Serge
Mangia, Mauro
Peter, Matthias

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings of 2010 IEEE International Symposium on Circuits and Systems : Paris, France : 30 May - 2 June 2010. Piscataway, NJ: IEEE, 2010, pp. 541-544. ISBN 978-1-4244-5308-5. Available under: doi: 10.1109/ISCAS.2010.5537549

Zusammenfassung

Calibration or model parameter estimation from measured data is an ubiquitous problem in engineering. In systems biology this problem turns out to be particularly challenging due to very short data-records, low signal-to-noise ratio of data acquisition, large intrinsic process noise and limited measurement access to only a few, of sometimes several hundreds, state variables. We review state-of-the-art model calibration techniques and also discuss their relation to the general reverse-engineering problem in systems biology. For biomolecular circuits involving low-copy-number molecules we adopt a Markov process setup and discuss a calibration approach based on suitable metrics between probability measures and propose the metrics computation for the multivariate case. In particular, we use Kantorovich's distance and devise an algorithm, for the case when FACS (fluorescence-activated cell sorting) measurements are given. We discuss a case study involving FACS data for the high-osmolarity glycerol (HOG) pathway in budding yeast.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

2010 IEEE International Symposium on Circuits and Systems - ISCAS 2010, 30. Mai 2010 - 2. Juni 2010, Paris, France
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KOEPPL, Heinz, Gianluca SETTI, Serge PELET, Mauro MANGIA, Tatjana PETROV, Matthias PETER, 2010. Probability metrics to calibrate stochastic chemical kinetics. 2010 IEEE International Symposium on Circuits and Systems - ISCAS 2010. Paris, France, 30. Mai 2010 - 2. Juni 2010. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems : Paris, France : 30 May - 2 June 2010. Piscataway, NJ: IEEE, 2010, pp. 541-544. ISBN 978-1-4244-5308-5. Available under: doi: 10.1109/ISCAS.2010.5537549
BibTex
@inproceedings{Koeppl2010Proba-42221,
  year={2010},
  doi={10.1109/ISCAS.2010.5537549},
  title={Probability metrics to calibrate stochastic chemical kinetics},
  isbn={978-1-4244-5308-5},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={Proceedings of 2010 IEEE International Symposium on Circuits and Systems : Paris, France : 30 May - 2 June 2010},
  pages={541--544},
  author={Koeppl, Heinz and Setti, Gianluca and Pelet, Serge and Mangia, Mauro and Petrov, Tatjana and Peter, Matthias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42221">
    <dc:creator>Peter, Matthias</dc:creator>
    <dc:creator>Koeppl, Heinz</dc:creator>
    <dc:contributor>Mangia, Mauro</dc:contributor>
    <dc:creator>Petrov, Tatjana</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42221"/>
    <dc:contributor>Petrov, Tatjana</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:issued>2010</dcterms:issued>
    <dc:contributor>Peter, Matthias</dc:contributor>
    <dc:creator>Mangia, Mauro</dc:creator>
    <dc:creator>Setti, Gianluca</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Koeppl, Heinz</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Pelet, Serge</dc:creator>
    <dcterms:title>Probability metrics to calibrate stochastic chemical kinetics</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-02T07:39:29Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Setti, Gianluca</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-02T07:39:29Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Calibration or model parameter estimation from measured data is an ubiquitous problem in engineering. In systems biology this problem turns out to be particularly challenging due to very short data-records, low signal-to-noise ratio of data acquisition, large intrinsic process noise and limited measurement access to only a few, of sometimes several hundreds, state variables. We review state-of-the-art model calibration techniques and also discuss their relation to the general reverse-engineering problem in systems biology. For biomolecular circuits involving low-copy-number molecules we adopt a Markov process setup and discuss a calibration approach based on suitable metrics between probability measures and propose the metrics computation for the multivariate case. In particular, we use Kantorovich's distance and devise an algorithm, for the case when FACS (fluorescence-activated cell sorting) measurements are given. We discuss a case study involving FACS data for the high-osmolarity glycerol (HOG) pathway in budding yeast.</dcterms:abstract>
    <dc:contributor>Pelet, Serge</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen