Probability metrics to calibrate stochastic chemical kinetics
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Calibration or model parameter estimation from measured data is an ubiquitous problem in engineering. In systems biology this problem turns out to be particularly challenging due to very short data-records, low signal-to-noise ratio of data acquisition, large intrinsic process noise and limited measurement access to only a few, of sometimes several hundreds, state variables. We review state-of-the-art model calibration techniques and also discuss their relation to the general reverse-engineering problem in systems biology. For biomolecular circuits involving low-copy-number molecules we adopt a Markov process setup and discuss a calibration approach based on suitable metrics between probability measures and propose the metrics computation for the multivariate case. In particular, we use Kantorovich's distance and devise an algorithm, for the case when FACS (fluorescence-activated cell sorting) measurements are given. We discuss a case study involving FACS data for the high-osmolarity glycerol (HOG) pathway in budding yeast.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KOEPPL, Heinz, Gianluca SETTI, Serge PELET, Mauro MANGIA, Tatjana PETROV, Matthias PETER, 2010. Probability metrics to calibrate stochastic chemical kinetics. 2010 IEEE International Symposium on Circuits and Systems - ISCAS 2010. Paris, France, 30. Mai 2010 - 2. Juni 2010. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems : Paris, France : 30 May - 2 June 2010. Piscataway, NJ: IEEE, 2010, pp. 541-544. ISBN 978-1-4244-5308-5. Available under: doi: 10.1109/ISCAS.2010.5537549BibTex
@inproceedings{Koeppl2010Proba-42221, year={2010}, doi={10.1109/ISCAS.2010.5537549}, title={Probability metrics to calibrate stochastic chemical kinetics}, isbn={978-1-4244-5308-5}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={Proceedings of 2010 IEEE International Symposium on Circuits and Systems : Paris, France : 30 May - 2 June 2010}, pages={541--544}, author={Koeppl, Heinz and Setti, Gianluca and Pelet, Serge and Mangia, Mauro and Petrov, Tatjana and Peter, Matthias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42221"> <dc:creator>Peter, Matthias</dc:creator> <dc:creator>Koeppl, Heinz</dc:creator> <dc:contributor>Mangia, Mauro</dc:contributor> <dc:creator>Petrov, Tatjana</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42221"/> <dc:contributor>Petrov, Tatjana</dc:contributor> <dc:language>eng</dc:language> <dcterms:issued>2010</dcterms:issued> <dc:contributor>Peter, Matthias</dc:contributor> <dc:creator>Mangia, Mauro</dc:creator> <dc:creator>Setti, Gianluca</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Koeppl, Heinz</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Pelet, Serge</dc:creator> <dcterms:title>Probability metrics to calibrate stochastic chemical kinetics</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-02T07:39:29Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Setti, Gianluca</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-02T07:39:29Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Calibration or model parameter estimation from measured data is an ubiquitous problem in engineering. In systems biology this problem turns out to be particularly challenging due to very short data-records, low signal-to-noise ratio of data acquisition, large intrinsic process noise and limited measurement access to only a few, of sometimes several hundreds, state variables. We review state-of-the-art model calibration techniques and also discuss their relation to the general reverse-engineering problem in systems biology. For biomolecular circuits involving low-copy-number molecules we adopt a Markov process setup and discuss a calibration approach based on suitable metrics between probability measures and propose the metrics computation for the multivariate case. In particular, we use Kantorovich's distance and devise an algorithm, for the case when FACS (fluorescence-activated cell sorting) measurements are given. We discuss a case study involving FACS data for the high-osmolarity glycerol (HOG) pathway in budding yeast.</dcterms:abstract> <dc:contributor>Pelet, Serge</dc:contributor> </rdf:Description> </rdf:RDF>