Synergistic Benefits of Group Search in Rats
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Locating unpredictable but essential resources is a task that all mobile animals have to perform in order to survive and reproduce. Research on search strategies has focused largely on independent individuals [1-3], but many organisms display collective behaviors, including during group search and foraging [4-6]. One classical experimental search task, informing studies of navigation, memory, and learning, is the location of a reward in a confined, complex maze setting [7, 8]. Rats (Rattus norvegicus) have been paradigmatic in psychological and biological studies [9, 10], but despite rats being highly social [11, 12], their group search behavior has not been investigated. Here, we explore the decision making of rats searching individually, or in groups, for a reward in a complex maze environment. Using automated video tracking, we find that rats exhibit-even when alone-a partially systematic search, leading to a continuous increase in their chance of finding the reward because of increased attraction to unexplored regions. When searching together, however, synergistic group advantages arise through integration of individual exploratory and social behavior. The superior search performances result from a strategy that represents a hierarchy of influential preferences in response to social and asocial cues. Furthermore, we present a computational model to compare the essential factors that influence how collective search operates and to validate that the collective search strategy increases the search efficiency of individuals in groups. This strategy can serve as direct inspiration for designing computational search algorithms and systems, such as autonomous robot groups, to explore areas inaccessible to humans.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
NAGY, Mate, Attila HORICSÁNYI, Enikő KUBINYI, Iain D. COUZIN, Gábor VÁSÁRHELYI, Andrea FLACK, Tamás VICSEK, 2020. Synergistic Benefits of Group Search in Rats. In: Current Biology. Cell Press. 2020, 30(23), pp. 4733-4738.e4. ISSN 0960-9822. eISSN 1879-0445. Available under: doi: 10.1016/j.cub.2020.08.079BibTex
@article{Nagy2020-12Syner-51098, year={2020}, doi={10.1016/j.cub.2020.08.079}, title={Synergistic Benefits of Group Search in Rats}, number={23}, volume={30}, issn={0960-9822}, journal={Current Biology}, pages={4733--4738.e4}, author={Nagy, Mate and Horicsányi, Attila and Kubinyi, Enikő and Couzin, Iain D. and Vásárhelyi, Gábor and Flack, Andrea and Vicsek, Tamás} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51098"> <dc:creator>Vicsek, Tamás</dc:creator> <dc:contributor>Couzin, Iain D.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Vásárhelyi, Gábor</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51098/1/Nagy_2-k14hwz9zrqtx6.pdf"/> <dc:creator>Flack, Andrea</dc:creator> <dc:creator>Couzin, Iain D.</dc:creator> <dc:creator>Kubinyi, Enikő</dc:creator> <dc:creator>Nagy, Mate</dc:creator> <dc:contributor>Flack, Andrea</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:creator>Horicsányi, Attila</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-29T10:52:01Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/> <dcterms:title>Synergistic Benefits of Group Search in Rats</dcterms:title> <dc:contributor>Nagy, Mate</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:contributor>Kubinyi, Enikő</dc:contributor> <dcterms:abstract xml:lang="eng">Locating unpredictable but essential resources is a task that all mobile animals have to perform in order to survive and reproduce. Research on search strategies has focused largely on independent individuals [1-3], but many organisms display collective behaviors, including during group search and foraging [4-6]. One classical experimental search task, informing studies of navigation, memory, and learning, is the location of a reward in a confined, complex maze setting [7, 8]. Rats (Rattus norvegicus) have been paradigmatic in psychological and biological studies [9, 10], but despite rats being highly social [11, 12], their group search behavior has not been investigated. Here, we explore the decision making of rats searching individually, or in groups, for a reward in a complex maze environment. Using automated video tracking, we find that rats exhibit-even when alone-a partially systematic search, leading to a continuous increase in their chance of finding the reward because of increased attraction to unexplored regions. When searching together, however, synergistic group advantages arise through integration of individual exploratory and social behavior. The superior search performances result from a strategy that represents a hierarchy of influential preferences in response to social and asocial cues. Furthermore, we present a computational model to compare the essential factors that influence how collective search operates and to validate that the collective search strategy increases the search efficiency of individuals in groups. This strategy can serve as direct inspiration for designing computational search algorithms and systems, such as autonomous robot groups, to explore areas inaccessible to humans.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51098/1/Nagy_2-k14hwz9zrqtx6.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2020-12</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Vásárhelyi, Gábor</dc:contributor> <dc:contributor>Vicsek, Tamás</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51098"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-29T10:52:01Z</dc:date> <dc:contributor>Horicsányi, Attila</dc:contributor> <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>