Publikation:

Forecasting elections with mere recognition from small, lousy samples : a comparison of collective recognition, wisdom of crowds, and representative polls

Lade...
Vorschaubild

Dateien

Gaissmaier_279320.pdf
Gaissmaier_279320.pdfGröße: 310.8 KBDownloads: 554

Datum

2011

Autor:innen

Marewski, Julian N.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Judgment and Decision Making. 2011, 6(1), pp. 73-88. eISSN 1930-2975

Zusammenfassung

We investigated the extent to which the human capacity for recognition helps to forecast political elections: We com- pared naïve recognition-based election forecasts computed from convenience samples of citizens’ recognition of party names to (i) standard polling forecasts computed from representative samples of citizens’ voting intentions, and to (ii) simple—and typically very accurate—wisdom-of-crowds-forecasts computed from the same convenience samples of citizens’ aggregated hunches about election results. Results from four major German elections show that mere recogni- tion of party names forecast the parties’ electoral success fairly well. Recognition-based forecasts were most competitive with the other models when forecasting the smaller parties’ success and for small sample sizes. However, wisdom-of- crowds-forecasts outperformed recognition-based forecasts in most cases. It seems that wisdom-of-crowds-forecasts are able to draw on the benefits of recognition while at the same time avoiding its downsides, such as lack of discrimination among very famous parties or recognition caused by factors unrelated to electoral success. Yet it seems that a simple extension of the recognition-based forecasts—asking people what proportion of the population would recognize a party instead of whether they themselves recognize it—is also able to eliminate these downsides.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

political elections, recognition, forecasting, heuristics, wisdom of crowds.

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690GAISSMAIER, Wolfgang, Julian N. MAREWSKI, 2011. Forecasting elections with mere recognition from small, lousy samples : a comparison of collective recognition, wisdom of crowds, and representative polls. In: Judgment and Decision Making. 2011, 6(1), pp. 73-88. eISSN 1930-2975
BibTex
@article{Gaissmaier2011Forec-27932,
  year={2011},
  title={Forecasting elections with mere recognition from small, lousy samples : a comparison of collective recognition, wisdom of crowds, and representative polls},
  number={1},
  volume={6},
  journal={Judgment and Decision Making},
  pages={73--88},
  author={Gaissmaier, Wolfgang and Marewski, Julian N.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/27932">
    <dc:creator>Marewski, Julian N.</dc:creator>
    <dcterms:issued>2011</dcterms:issued>
    <dc:contributor>Gaissmaier, Wolfgang</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27932/1/Gaissmaier_279320.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27932"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-05-26T08:08:32Z</dc:date>
    <dcterms:abstract xml:lang="eng">We investigated the extent to which the human capacity for recognition helps to forecast political elections: We com- pared naïve recognition-based election forecasts computed from convenience samples of citizens’ recognition of party names to (i) standard polling forecasts computed from representative samples of citizens’ voting intentions, and to (ii) simple—and typically very accurate—wisdom-of-crowds-forecasts computed from the same convenience samples of citizens’ aggregated hunches about election results. Results from four major German elections show that mere recogni- tion of party names forecast the parties’ electoral success fairly well. Recognition-based forecasts were most competitive with the other models when forecasting the smaller parties’ success and for small sample sizes. However, wisdom-of- crowds-forecasts outperformed recognition-based forecasts in most cases. It seems that wisdom-of-crowds-forecasts are able to draw on the benefits of recognition while at the same time avoiding its downsides, such as lack of discrimination among very famous parties or recognition caused by factors unrelated to electoral success. Yet it seems that a simple extension of the recognition-based forecasts—asking people what proportion of the population would recognize a party instead of whether they themselves recognize it—is also able to eliminate these downsides.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27932/1/Gaissmaier_279320.pdf"/>
    <dcterms:title>Forecasting elections with mere recognition from small, lousy samples : a comparison of collective recognition, wisdom of crowds, and representative polls</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-05-26T08:08:32Z</dcterms:available>
    <dc:creator>Gaissmaier, Wolfgang</dc:creator>
    <dc:contributor>Marewski, Julian N.</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:bibliographicCitation>Judgment and Decision Making ; 6 (2011), 1. - S. 73-88</dcterms:bibliographicCitation>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen