A New Metaphor for Projection-Based Visual Analysis and Data Exploration
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In many important application domains such as Business and Finance, Process Monitoring, and Security, huge and quickly increasing volumes of complex data are collected. Strong efforts are underway developing automatic and interactive analysis tools for mining useful information from these data repositories. Many data analysis algorithms require an appropriate definition of similarity (or distance) between data instances to allow meaningful clustering, classification, and retrieval, among other analysis tasks. Projection-based data visualization is highly interesting (a) for visual discrimination analysis of a data set within a given similarity definition, and (b) for comparative analysis of similarity characteristics of a given data set represented by different similarity definitions. We introduce an intuitive and effective novel approach for projection-based similarity visualization for interactive discrimination analysis, data exploration, and visual evaluation of metric space effectiveness. The approach is based on the convex hull metaphor for visually aggregating sets of points in projected space, and it can be used with a variety of different projection techniques. The effectiveness of the approach is demonstrated by application on two well-known data sets. Statistical evidence supporting the validity of the hull metaphor is presented. We advocate the hull-based approach over the standard symbol-based approach to projection visualization, as it allows a more effective perception of similarity relationships and class distribution characteristics.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHRECK, Tobias, Christian PANSE, 2007. A New Metaphor for Projection-Based Visual Analysis and Data Exploration. Electronic Imaging 2007. San Jose, CA. In: ERBACHER, Robert F., ed., Jonathan C. ROBERTS, ed., Matti T. GRÖHN, ed., Katy BÖRNER, ed.. Visualization and Data Analysis 2007. SPIE, 2007, pp. 64950L-64950L-12. SPIE Proceedings. 6495. Available under: doi: 10.1117/12.697879BibTex
@inproceedings{Schreck2007-01-28Metap-5634, year={2007}, doi={10.1117/12.697879}, title={A New Metaphor for Projection-Based Visual Analysis and Data Exploration}, number={6495}, publisher={SPIE}, series={SPIE Proceedings}, booktitle={Visualization and Data Analysis 2007}, pages={64950L--64950L-12}, editor={Erbacher, Robert F. and Roberts, Jonathan C. and Gröhn, Matti T. and Börner, Katy}, author={Schreck, Tobias and Panse, Christian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5634"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>A New Metaphor for Projection-Based Visual Analysis and Data Exploration</dcterms:title> <dcterms:abstract xml:lang="eng">In many important application domains such as Business and Finance, Process Monitoring, and Security, huge and quickly increasing volumes of complex data are collected. Strong efforts are underway developing automatic and interactive analysis tools for mining useful information from these data repositories. Many data analysis algorithms require an appropriate definition of similarity (or distance) between data instances to allow meaningful clustering, classification, and retrieval, among other analysis tasks. Projection-based data visualization is highly interesting (a) for visual discrimination analysis of a data set within a given similarity definition, and (b) for comparative analysis of similarity characteristics of a given data set represented by different similarity definitions. We introduce an intuitive and effective novel approach for projection-based similarity visualization for interactive discrimination analysis, data exploration, and visual evaluation of metric space effectiveness. The approach is based on the convex hull metaphor for visually aggregating sets of points in projected space, and it can be used with a variety of different projection techniques. The effectiveness of the approach is demonstrated by application on two well-known data sets. Statistical evidence supporting the validity of the hull metaphor is presented. We advocate the hull-based approach over the standard symbol-based approach to projection visualization, as it allows a more effective perception of similarity relationships and class distribution characteristics.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5634/1/A_New_Metaphor_for_Projection_Based_Visual_Analysis_and_Data_Exploration.pdf"/> <dc:format>application/pdf</dc:format> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2007-01-28</dcterms:issued> <dc:creator>Panse, Christian</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5634/1/A_New_Metaphor_for_Projection_Based_Visual_Analysis_and_Data_Exploration.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:bibliographicCitation>Paper for: IS&T/SPIE Conference on Visualization and Data Analysis (VDA) 2007, January 28th - February 1st, 2007, San Jose, Ca, USA, 2007</dcterms:bibliographicCitation> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5634"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:21Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:contributor>Panse, Christian</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:21Z</dcterms:available> <dc:creator>Schreck, Tobias</dc:creator> <dc:contributor>Schreck, Tobias</dc:contributor> </rdf:Description> </rdf:RDF>