Non-conforming multiscale finite element method for Stokes flows in heterogeneous media : Part II: Error estimates for periodic microstructure
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper is dedicated to the rigorous numerical analysis of a Multiscale Finite Element Method (MsFEM) for the Stokes system, when dealing with highly heterogeneous media, as proposed in B.P. Muljadi et al., Non-conforming multiscale finite Element method for Stokes flows in heterogeneous media. Part Ⅰ: Methodologies and numerical experiments, SIAM MMS (2015), 13(4) 1146-–1172. The method is in the vein of the classical Crouzeix-Raviart approach. It is generalized here to arbitrary sets of weighting functions used to enforce continuity across the mesh edges. We provide error bounds for a particular set of weighting functions in a periodic setting, using an accurate estimate of the homogenization error. Numerical experiments demonstrate an improved accuracy of the present variant with respect to that of Part Ⅰ, both in the periodic case and in a broader setting.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JANKOWIAK, Gaspard, Alexei LOZINSKI, 2023. Non-conforming multiscale finite element method for Stokes flows in heterogeneous media : Part II: Error estimates for periodic microstructure. In: Discrete and Continuous Dynamical Systems. Series B. American Institute of Mathematical Sciences (AIMS). ISSN 1531-3492. eISSN 1553-524X. Available under: doi: 10.3934/dcdsb.2023178BibTex
@article{Jankowiak2023Nonco-68120, year={2023}, doi={10.3934/dcdsb.2023178}, title={Non-conforming multiscale finite element method for Stokes flows in heterogeneous media : Part II: Error estimates for periodic microstructure}, issn={1531-3492}, journal={Discrete and Continuous Dynamical Systems. Series B}, author={Jankowiak, Gaspard and Lozinski, Alexei} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68120"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-10T09:29:55Z</dcterms:available> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Lozinski, Alexei</dc:creator> <dc:contributor>Jankowiak, Gaspard</dc:contributor> <dcterms:title>Non-conforming multiscale finite element method for Stokes flows in heterogeneous media : Part II: Error estimates for periodic microstructure</dcterms:title> <dcterms:issued>2023</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68120"/> <dcterms:abstract>This paper is dedicated to the rigorous numerical analysis of a Multiscale Finite Element Method (MsFEM) for the Stokes system, when dealing with highly heterogeneous media, as proposed in B.P. Muljadi et al., Non-conforming multiscale finite Element method for Stokes flows in heterogeneous media. Part Ⅰ: Methodologies and numerical experiments, SIAM MMS (2015), 13(4) 1146-–1172. The method is in the vein of the classical Crouzeix-Raviart approach. It is generalized here to arbitrary sets of weighting functions used to enforce continuity across the mesh edges. We provide error bounds for a particular set of weighting functions in a periodic setting, using an accurate estimate of the homogenization error. Numerical experiments demonstrate an improved accuracy of the present variant with respect to that of Part Ⅰ, both in the periodic case and in a broader setting.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Jankowiak, Gaspard</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-10T09:29:55Z</dc:date> <dc:contributor>Lozinski, Alexei</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>