Non-conforming multiscale finite element method for Stokes flows in heterogeneous media : Part II: Error estimates for periodic microstructure

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2023
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Zusammenfassung

This paper is dedicated to the rigorous numerical analysis of a Multiscale Finite Element Method (MsFEM) for the Stokes system, when dealing with highly heterogeneous media, as proposed in B.P. Muljadi et al., Non-conforming multiscale finite Element method for Stokes flows in heterogeneous media. Part Ⅰ: Methodologies and numerical experiments, SIAM MMS (2015), 13(4) 1146-–1172. The method is in the vein of the classical Crouzeix-Raviart approach. It is generalized here to arbitrary sets of weighting functions used to enforce continuity across the mesh edges. We provide error bounds for a particular set of weighting functions in a periodic setting, using an accurate estimate of the homogenization error. Numerical experiments demonstrate an improved accuracy of the present variant with respect to that of Part Ⅰ, both in the periodic case and in a broader setting.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Applied Mathematics, Discrete Mathematics and Combinatorics
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690JANKOWIAK, Gaspard, Alexei LOZINSKI, 2023. Non-conforming multiscale finite element method for Stokes flows in heterogeneous media : Part II: Error estimates for periodic microstructure. In: Discrete and Continuous Dynamical Systems. Series B. American Institute of Mathematical Sciences (AIMS). ISSN 1531-3492. eISSN 1553-524X. Available under: doi: 10.3934/dcdsb.2023178
BibTex
@article{Jankowiak2023Nonco-68120,
  year={2023},
  doi={10.3934/dcdsb.2023178},
  title={Non-conforming multiscale finite element method for Stokes flows in heterogeneous media : Part II: Error estimates for periodic microstructure},
  issn={1531-3492},
  journal={Discrete and Continuous Dynamical Systems. Series B},
  author={Jankowiak, Gaspard and Lozinski, Alexei}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68120">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-10T09:29:55Z</dcterms:available>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Lozinski, Alexei</dc:creator>
    <dc:contributor>Jankowiak, Gaspard</dc:contributor>
    <dcterms:title>Non-conforming multiscale finite element method for Stokes flows in heterogeneous media : Part II: Error estimates for periodic microstructure</dcterms:title>
    <dcterms:issued>2023</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68120"/>
    <dcterms:abstract>This paper is dedicated to the rigorous numerical analysis of a Multiscale Finite Element Method (MsFEM) for the Stokes system, when dealing with highly heterogeneous media, as proposed in B.P. Muljadi et al., Non-conforming multiscale finite Element method for Stokes flows in heterogeneous media. Part Ⅰ: Methodologies and numerical experiments, SIAM MMS (2015), 13(4) 1146-–1172. The method is in the vein of the classical Crouzeix-Raviart approach. It is generalized here to arbitrary sets of weighting functions used to enforce continuity across the mesh edges. We provide error bounds for a particular set of weighting functions in a periodic setting, using an accurate estimate of the homogenization error. Numerical experiments demonstrate an improved accuracy of the present variant with respect to that of Part Ⅰ, both in the periodic case and in a broader setting.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Jankowiak, Gaspard</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-10T09:29:55Z</dc:date>
    <dc:contributor>Lozinski, Alexei</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen