Ranking query results from Linked Open Data using a simple cognitive heuristic
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We address the problem how to select the correct answers to a query from among the partially incorrect answer sets that result from querying the Web of Data.
Our hypothesis is that cognitively inspired similarity measures can be exploited to filter the correct answers from the full set of answers. These measure are extremely simple and efficient when compared to those proposed in the literature, while still producing good results.
We validate this hypothesis by comparing the performance of our heuristic to human-level performance on a benchmark of queries to Linked Open Data resources. In our experiment, the cognitively inspired similarity heuristic scored within 10% of human performance. This is surprising given the fact that our heuristic is extremely simple and efficient when compared to those proposed in the literature.
A secondary contribution of this work is a freely available benchmark of 47 queries (in both natural language and SPARQL) plus gold standard human answers for each of these and 1896 SPARQL answers that are human-ranked for their quality.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BUIKSTRA, Arjon, Hansjörg NETH, Lael SCHOOLER, Annette ten TEIJE, Frank van HARMELEN, 2011. Ranking query results from Linked Open Data using a simple cognitive heuristic. IJCAI- 11. Barcelona, Spain, 16. Juli 2011. In: Workshop on Discovering Meaning On the Go in Large Heterogeneous Data 2011 (LHD- 11) Held at The Twenty-second International Joint Conference on Artificial Intelligence (IJCAI- 11), July 16, 2011, Barcelona, Spain. 2011BibTex
@inproceedings{Buikstra2011Ranki-28401, year={2011}, title={Ranking query results from Linked Open Data using a simple cognitive heuristic}, booktitle={Workshop on Discovering Meaning On the Go in Large Heterogeneous Data 2011 (LHD- 11) Held at The Twenty-second International Joint Conference on Artificial Intelligence (IJCAI- 11), July 16, 2011, Barcelona, Spain}, author={Buikstra, Arjon and Neth, Hansjörg and Schooler, Lael and Teije, Annette ten and Harmelen, Frank van} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28401"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/28401"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Harmelen, Frank van</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-07-25T08:16:39Z</dcterms:available> <dcterms:abstract xml:lang="eng">We address the problem how to select the correct answers to a query from among the partially incorrect answer sets that result from querying the Web of Data.<br /><br />Our hypothesis is that cognitively inspired similarity measures can be exploited to filter the correct answers from the full set of answers. These measure are extremely simple and efficient when compared to those proposed in the literature, while still producing good results.<br /><br />We validate this hypothesis by comparing the performance of our heuristic to human-level performance on a benchmark of queries to Linked Open Data resources. In our experiment, the cognitively inspired similarity heuristic scored within 10% of human performance. This is surprising given the fact that our heuristic is extremely simple and efficient when compared to those proposed in the literature.<br /><br />A secondary contribution of this work is a freely available benchmark of 47 queries (in both natural language and SPARQL) plus gold standard human answers for each of these and 1896 SPARQL answers that are human-ranked for their quality.</dcterms:abstract> <dcterms:title>Ranking query results from Linked Open Data using a simple cognitive heuristic</dcterms:title> <dc:creator>Neth, Hansjörg</dc:creator> <dc:creator>Schooler, Lael</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:contributor>Teije, Annette ten</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>2011</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/28401/1/Buikstra_284016.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-07-25T08:16:39Z</dc:date> <dc:contributor>Schooler, Lael</dc:contributor> <dc:contributor>Buikstra, Arjon</dc:contributor> <dcterms:bibliographicCitation>Presentation at: Workshop on Discovering Meaning On the Go in Large Heterogeneous Data 2011 (LHD-11) Held at The Twenty-second International Joint Conference on Artificial Intelligence (IJCAI-11), July 16, 2011, Barcelona, Spain</dcterms:bibliographicCitation> <dc:creator>Buikstra, Arjon</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Teije, Annette ten</dc:creator> <dc:creator>Harmelen, Frank van</dc:creator> <dc:contributor>Neth, Hansjörg</dc:contributor> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/28401/1/Buikstra_284016.pdf"/> </rdf:Description> </rdf:RDF>