AI-based markerless single-camera motion analysis for estimating knee and hip joint kinematics during gait
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This study aimed to pilot-test a markerless motion analysis approach (i.e., SMARTGAIT) for estimating knee and hip joint kinematics in the sagittal and frontal plane during overground walking. One person (age 24 years) walked four times over an 8-meter distance. Joint kinematics were measured using SMARTGAIT (single RGB smartphone camera) and Vicon (reference system). Angle trajectories of sixteen gait cycles were used for the analysis. Agreement between SMARTGAIT and Vicon angle trajectories was greater in the sagittal plane (hip: Pearson’s r=0.989; knee: r=0.990; root mean square error [RMSE] ≤2.6 deg) compared to the frontal plane (hip: r=0.789; knee: r=0.793; RMSE ≤3.9 deg). These initial results show the potential of SMARTGAIT for measuring lower extremity joint kinematics. The camera perspective may influence the accuracy of SMARTGAIT.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHWENK, Michael, Philipp BARZYK, Alina BODEN, Daniel SEEBACHER, Philip ZIMMERMANN, Manuel STEIN, Markus GRUBER, 2024. AI-based markerless single-camera motion analysis for estimating knee and hip joint kinematics during gait. 42nd Conference of the International Society of Biomechanics in Sports (ISBS) 2024. Salzburg, Austria, 15. Juli 2024 - 19. Juli 2024. In: HOLDER, Jana, Hrsg., Isabella FESSL, Hrsg., Eric HARBOUR, Hrsg. und andere. ISBS 2024 Conference Proceedings. Michigan: NMU Commons, 2024, S. 822-825. ISBS Conference Proceedings Archive. 42BibTex
@inproceedings{Schwenk2024AIbas-71193, year={2024}, title={AI-based markerless single-camera motion analysis for estimating knee and hip joint kinematics during gait}, url={https://commons.nmu.edu/isbs/vol42/iss1/110}, number={42}, publisher={NMU Commons}, address={Michigan}, series={ISBS Conference Proceedings Archive}, booktitle={ISBS 2024 Conference Proceedings}, pages={822--825}, editor={Holder, Jana and Fessl, Isabella and Harbour, Eric}, author={Schwenk, Michael and Barzyk, Philipp and Boden, Alina and Seebacher, Daniel and Zimmermann, Philip and Stein, Manuel and Gruber, Markus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71193"> <dc:creator>Gruber, Markus</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35"/> <dc:contributor>Stein, Manuel</dc:contributor> <dc:contributor>Seebacher, Daniel</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-11T11:55:41Z</dcterms:available> <dc:creator>Schwenk, Michael</dc:creator> <dc:contributor>Gruber, Markus</dc:contributor> <dc:contributor>Barzyk, Philipp</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Stein, Manuel</dc:creator> <dc:contributor>Zimmermann, Philip</dc:contributor> <dcterms:abstract>This study aimed to pilot-test a markerless motion analysis approach (i.e., SMARTGAIT) for estimating knee and hip joint kinematics in the sagittal and frontal plane during overground walking. One person (age 24 years) walked four times over an 8-meter distance. Joint kinematics were measured using SMARTGAIT (single RGB smartphone camera) and Vicon (reference system). Angle trajectories of sixteen gait cycles were used for the analysis. Agreement between SMARTGAIT and Vicon angle trajectories was greater in the sagittal plane (hip: Pearson’s r=0.989; knee: r=0.990; root mean square error [RMSE] ≤2.6 deg) compared to the frontal plane (hip: r=0.789; knee: r=0.793; RMSE ≤3.9 deg). These initial results show the potential of SMARTGAIT for measuring lower extremity joint kinematics. The camera perspective may influence the accuracy of SMARTGAIT.</dcterms:abstract> <dc:creator>Barzyk, Philipp</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-11T11:55:41Z</dc:date> <dc:creator>Boden, Alina</dc:creator> <dcterms:title>AI-based markerless single-camera motion analysis for estimating knee and hip joint kinematics during gait</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Zimmermann, Philip</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71193"/> <dc:creator>Seebacher, Daniel</dc:creator> <dc:contributor>Boden, Alina</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Schwenk, Michael</dc:contributor> <dcterms:issued>2024</dcterms:issued> </rdf:Description> </rdf:RDF>