Effect of sulfonamide antibiotics on microbial diversity and activity in a Californian Mollic Haploxeralf
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Purpose
Up to 90% of antibiotics that are fed to livestock are excreted unaltered or as metabolites and thus are present in manure. By application of manure as fertilizer, veterinary antibiotics can reach soil and groundwater. The aim of this study is to determine the effect of three commonly used (and simultaneously applied) sulfonamide antibiotics on both function and structural diversity of soil microorganisms. To this end, the activity of the enzymes urease and dehydrogenase was determined, and the composition of phospholipid fatty acids (PLFA) was analyzed.
Materials and methods
Soil and manure were sampled at a dairy farm located in the Northern San Joaquin Valley, California, USA. Soil (700 g) was amended with either mineral water only (W-treatments), liquid manure (M-treatments), or with glucose solution (G-treatments). Each of these soil treatments was mixed with a cocktail of three sulfonamides: sulfadimethoxine (SDT), sulfamethoxazole (SMX), and sulfamethazine (SMZ) at five total concentration levels ranging from 0 (control) to 900 µg gdm−1. After 24, 48, 96, 168, 264, 384, and 504 h, UA and DHA were determined; PLFA composition in selected samples was analyzed at t = 168 h and 504 h of incubation.
Results and discussion
In the G-treatments, urease activity decreased with higher sulfonamide concentrations; no effect was observed when no glucose was added (W-treatments). While a dose response relationship was observed for urease activity after 168 h, a similar inhibition was measured after 380 h at all sulfonamide concentrations. Sulfonamides also reduced dehydrogenase activity in the G-treatments, but results are less conclusive than for urease. With increasing sulfonamide concentration, microbial and bacterial biomass decreased in the G-treatments compared to the control at 168 h. Sulfonamides caused a relative community shift towards gram-negative bacteria and towards an increased proportion of fungal biomass. Strong inhibition of urease by manure (M-treatments) was observed even without the addition of sulfonamides.
Conclusions
Sulfonamides clearly affected both the function and structural diversity of the soil microbial community over at least 16 days. The soil microbial community was affected by sulfonamides even at a relatively low concentration, although this soil receives regular input of manure that contains several antibiotics. Further research is needed addressing both long-term effects and lower sulfonamide concentrations under dynamic boundary conditions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GUTIÉRREZ, Iris Raquel, Naoko WATANABE, Thomas HARTER, Bruno GLASER, Michael RADKE, 2010. Effect of sulfonamide antibiotics on microbial diversity and activity in a Californian Mollic Haploxeralf. In: Journal of Soils and Sediments. 2010, 10(3), pp. 537-544. ISSN 1439-0108. eISSN 1614-7480. Available under: doi: 10.1007/s11368-009-0168-8BibTex
@article{Gutierrez2010Effec-8216, year={2010}, doi={10.1007/s11368-009-0168-8}, title={Effect of sulfonamide antibiotics on microbial diversity and activity in a Californian Mollic Haploxeralf}, number={3}, volume={10}, issn={1439-0108}, journal={Journal of Soils and Sediments}, pages={537--544}, author={Gutiérrez, Iris Raquel and Watanabe, Naoko and Harter, Thomas and Glaser, Bruno and Radke, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/8216"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/8216"/> <dc:creator>Gutiérrez, Iris Raquel</dc:creator> <dcterms:title>Effect of sulfonamide antibiotics on microbial diversity and activity in a Californian Mollic Haploxeralf</dcterms:title> <dc:contributor>Glaser, Bruno</dc:contributor> <dcterms:abstract xml:lang="eng">Purpose<br />Up to 90% of antibiotics that are fed to livestock are excreted unaltered or as metabolites and thus are present in manure. By application of manure as fertilizer, veterinary antibiotics can reach soil and groundwater. The aim of this study is to determine the effect of three commonly used (and simultaneously applied) sulfonamide antibiotics on both function and structural diversity of soil microorganisms. To this end, the activity of the enzymes urease and dehydrogenase was determined, and the composition of phospholipid fatty acids (PLFA) was analyzed.<br />Materials and methods<br />Soil and manure were sampled at a dairy farm located in the Northern San Joaquin Valley, California, USA. Soil (700 g) was amended with either mineral water only (W-treatments), liquid manure (M-treatments), or with glucose solution (G-treatments). Each of these soil treatments was mixed with a cocktail of three sulfonamides: sulfadimethoxine (SDT), sulfamethoxazole (SMX), and sulfamethazine (SMZ) at five total concentration levels ranging from 0 (control) to 900 µg gdm−1. After 24, 48, 96, 168, 264, 384, and 504 h, UA and DHA were determined; PLFA composition in selected samples was analyzed at t = 168 h and 504 h of incubation.<br />Results and discussion<br />In the G-treatments, urease activity decreased with higher sulfonamide concentrations; no effect was observed when no glucose was added (W-treatments). While a dose response relationship was observed for urease activity after 168 h, a similar inhibition was measured after 380 h at all sulfonamide concentrations. Sulfonamides also reduced dehydrogenase activity in the G-treatments, but results are less conclusive than for urease. With increasing sulfonamide concentration, microbial and bacterial biomass decreased in the G-treatments compared to the control at 168 h. Sulfonamides caused a relative community shift towards gram-negative bacteria and towards an increased proportion of fungal biomass. Strong inhibition of urease by manure (M-treatments) was observed even without the addition of sulfonamides.<br />Conclusions<br />Sulfonamides clearly affected both the function and structural diversity of the soil microbial community over at least 16 days. The soil microbial community was affected by sulfonamides even at a relatively low concentration, although this soil receives regular input of manure that contains several antibiotics. Further research is needed addressing both long-term effects and lower sulfonamide concentrations under dynamic boundary conditions.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Gutiérrez, Iris Raquel</dc:contributor> <dc:creator>Harter, Thomas</dc:creator> <dc:creator>Watanabe, Naoko</dc:creator> <dcterms:issued>2010</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:41:30Z</dc:date> <dc:contributor>Watanabe, Naoko</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Harter, Thomas</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/8216/1/Gutierrez_2010.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-05-03T08:53:16Z</dcterms:available> <dc:format>application/pdf</dc:format> <dc:creator>Glaser, Bruno</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/8216/1/Gutierrez_2010.pdf"/> <dc:contributor>Radke, Michael</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:bibliographicCitation>First publ. in: Journal of Soils and Sediments 10 (2010), 3, pp. 537-544</dcterms:bibliographicCitation> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Radke, Michael</dc:creator> </rdf:Description> </rdf:RDF>