Kernel Approach to Molecular Similarity Based on Iterative Graph Similarity
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Similarity measures for molecules are of basic importance in chemical, biological, and pharmaceutical applications. We introduce a molecular similarity measure defined directly on the annotated molecular graph, based on iterative graph similarity and optimal assignments. We give an iterative algorithm for the computation of the proposed molecular similarity measure, prove its convergence and the uniqueness of the solution, and provide an upper bound on the required number of iterations necessary to achieve a desired precision. Empirical evidence for the positive semidefiniteness of certain parametrizations of our function is presented. We evaluated our molecular similarity measure by using it as a kernel in support vector machine classification and regression applied to several pharmaceutical and toxicological data sets, with encouraging results.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RUPP, Matthias, Ewgenij PROSCHAK, Gisbert SCHNEIDER, 2007. Kernel Approach to Molecular Similarity Based on Iterative Graph Similarity. In: Journal of Chemical Information and Modeling. American Chemical Society (ACS). 2007, 47(6), pp. 2280-2286. ISSN 1549-9596. eISSN 1549-960X. Available under: doi: 10.1021/ci700274rBibTex
@article{Rupp2007Kerne-52197, year={2007}, doi={10.1021/ci700274r}, title={Kernel Approach to Molecular Similarity Based on Iterative Graph Similarity}, number={6}, volume={47}, issn={1549-9596}, journal={Journal of Chemical Information and Modeling}, pages={2280--2286}, author={Rupp, Matthias and Proschak, Ewgenij and Schneider, Gisbert} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52197"> <dc:contributor>Rupp, Matthias</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Proschak, Ewgenij</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Schneider, Gisbert</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-21T10:38:37Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dcterms:issued>2007</dcterms:issued> <dc:creator>Rupp, Matthias</dc:creator> <dc:creator>Schneider, Gisbert</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52197"/> <dcterms:abstract xml:lang="eng">Similarity measures for molecules are of basic importance in chemical, biological, and pharmaceutical applications. We introduce a molecular similarity measure defined directly on the annotated molecular graph, based on iterative graph similarity and optimal assignments. We give an iterative algorithm for the computation of the proposed molecular similarity measure, prove its convergence and the uniqueness of the solution, and provide an upper bound on the required number of iterations necessary to achieve a desired precision. Empirical evidence for the positive semidefiniteness of certain parametrizations of our function is presented. We evaluated our molecular similarity measure by using it as a kernel in support vector machine classification and regression applied to several pharmaceutical and toxicological data sets, with encouraging results.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Kernel Approach to Molecular Similarity Based on Iterative Graph Similarity</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Proschak, Ewgenij</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-21T10:38:37Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>