Publikation:

Kernel Approach to Molecular Similarity Based on Iterative Graph Similarity

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2007

Autor:innen

Proschak, Ewgenij
Schneider, Gisbert

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Chemical Information and Modeling. American Chemical Society (ACS). 2007, 47(6), pp. 2280-2286. ISSN 1549-9596. eISSN 1549-960X. Available under: doi: 10.1021/ci700274r

Zusammenfassung

Similarity measures for molecules are of basic importance in chemical, biological, and pharmaceutical applications. We introduce a molecular similarity measure defined directly on the annotated molecular graph, based on iterative graph similarity and optimal assignments. We give an iterative algorithm for the computation of the proposed molecular similarity measure, prove its convergence and the uniqueness of the solution, and provide an upper bound on the required number of iterations necessary to achieve a desired precision. Empirical evidence for the positive semidefiniteness of certain parametrizations of our function is presented. We evaluated our molecular similarity measure by using it as a kernel in support vector machine classification and regression applied to several pharmaceutical and toxicological data sets, with encouraging results.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RUPP, Matthias, Ewgenij PROSCHAK, Gisbert SCHNEIDER, 2007. Kernel Approach to Molecular Similarity Based on Iterative Graph Similarity. In: Journal of Chemical Information and Modeling. American Chemical Society (ACS). 2007, 47(6), pp. 2280-2286. ISSN 1549-9596. eISSN 1549-960X. Available under: doi: 10.1021/ci700274r
BibTex
@article{Rupp2007Kerne-52197,
  year={2007},
  doi={10.1021/ci700274r},
  title={Kernel Approach to Molecular Similarity Based on Iterative Graph Similarity},
  number={6},
  volume={47},
  issn={1549-9596},
  journal={Journal of Chemical Information and Modeling},
  pages={2280--2286},
  author={Rupp, Matthias and Proschak, Ewgenij and Schneider, Gisbert}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52197">
    <dc:contributor>Rupp, Matthias</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Proschak, Ewgenij</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Schneider, Gisbert</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-21T10:38:37Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:issued>2007</dcterms:issued>
    <dc:creator>Rupp, Matthias</dc:creator>
    <dc:creator>Schneider, Gisbert</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52197"/>
    <dcterms:abstract xml:lang="eng">Similarity measures for molecules are of basic importance in chemical, biological, and pharmaceutical applications. We introduce a molecular similarity measure defined directly on the annotated molecular graph, based on iterative graph similarity and optimal assignments. We give an iterative algorithm for the computation of the proposed molecular similarity measure, prove its convergence and the uniqueness of the solution, and provide an upper bound on the required number of iterations necessary to achieve a desired precision. Empirical evidence for the positive semidefiniteness of certain parametrizations of our function is presented. We evaluated our molecular similarity measure by using it as a kernel in support vector machine classification and regression applied to several pharmaceutical and toxicological data sets, with encouraging results.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Kernel Approach to Molecular Similarity Based on Iterative Graph Similarity</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Proschak, Ewgenij</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-21T10:38:37Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen