A Sparse Approximate Factor Model for High-Dimensional Covariance Matrix Estimation and Portfolio Selection
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We propose a novel estimation approach for the covariance matrix based on the l1-regularized approximate factor model (AFM). Our sparse approximate factor (SAF) covariance estimator allows for the existence of weak factors and hence relaxes the pervasiveness assumption generally adopted for the standard AFM. We prove the consistency of the covariance matrix estimator under the Frobenius norm as well as the consistency of the factor loadings and the factors. Our Monte Carlo simulations reveal that the SAF covariance estimator has superior properties in finite samples for low and high dimensions and different designs of the covariance matrix. Moreover, in an out-of-sample portfolio forecasting application, the estimator uniformly outperforms alternative portfolio strategies based on alternative covariance estimation approaches and modeling strategies including the 1/N-strategy.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DANIELE, Maurizio, Winfried POHLMEIER, Aygul ZAGIDULLINA, 2024. A Sparse Approximate Factor Model for High-Dimensional Covariance Matrix Estimation and Portfolio Selection. In: Journal of Financial Econometrics. Oxford University Press (OUP), nbae017. ISSN 1479-8409. eISSN 1479-8417. Verfügbar unter: doi: 10.1093/jjfinec/nbae017BibTex
@article{Daniele2024-07-31Spars-70642, year={2024}, doi={10.1093/jjfinec/nbae017}, title={A Sparse Approximate Factor Model for High-Dimensional Covariance Matrix Estimation and Portfolio Selection}, issn={1479-8409}, journal={Journal of Financial Econometrics}, author={Daniele, Maurizio and Pohlmeier, Winfried and Zagidullina, Aygul}, note={Article Number: nbae017} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70642"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>A Sparse Approximate Factor Model for High-Dimensional Covariance Matrix Estimation and Portfolio Selection</dcterms:title> <dc:contributor>Pohlmeier, Winfried</dc:contributor> <dc:contributor>Zagidullina, Aygul</dc:contributor> <dc:creator>Pohlmeier, Winfried</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-23T08:49:45Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70642"/> <dc:language>eng</dc:language> <dc:contributor>Daniele, Maurizio</dc:contributor> <dcterms:issued>2024-07-31</dcterms:issued> <dc:creator>Zagidullina, Aygul</dc:creator> <dcterms:abstract>We propose a novel estimation approach for the covariance matrix based on the l1-regularized approximate factor model (AFM). Our sparse approximate factor (SAF) covariance estimator allows for the existence of weak factors and hence relaxes the pervasiveness assumption generally adopted for the standard AFM. We prove the consistency of the covariance matrix estimator under the Frobenius norm as well as the consistency of the factor loadings and the factors. Our Monte Carlo simulations reveal that the SAF covariance estimator has superior properties in finite samples for low and high dimensions and different designs of the covariance matrix. Moreover, in an out-of-sample portfolio forecasting application, the estimator uniformly outperforms alternative portfolio strategies based on alternative covariance estimation approaches and modeling strategies including the 1/N-strategy.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-23T08:49:45Z</dcterms:available> <dc:creator>Daniele, Maurizio</dc:creator> </rdf:Description> </rdf:RDF>