Publikation:

A Sparse Approximate Factor Model for High-Dimensional Covariance Matrix Estimation and Portfolio Selection

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Financial Econometrics. Oxford University Press (OUP), nbae017. ISSN 1479-8409. eISSN 1479-8417. Verfügbar unter: doi: 10.1093/jjfinec/nbae017

Zusammenfassung

We propose a novel estimation approach for the covariance matrix based on the l1-regularized approximate factor model (AFM). Our sparse approximate factor (SAF) covariance estimator allows for the existence of weak factors and hence relaxes the pervasiveness assumption generally adopted for the standard AFM. We prove the consistency of the covariance matrix estimator under the Frobenius norm as well as the consistency of the factor loadings and the factors. Our Monte Carlo simulations reveal that the SAF covariance estimator has superior properties in finite samples for low and high dimensions and different designs of the covariance matrix. Moreover, in an out-of-sample portfolio forecasting application, the estimator uniformly outperforms alternative portfolio strategies based on alternative covariance estimation approaches and modeling strategies including the 1/N-strategy.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690DANIELE, Maurizio, Winfried POHLMEIER, Aygul ZAGIDULLINA, 2024. A Sparse Approximate Factor Model for High-Dimensional Covariance Matrix Estimation and Portfolio Selection. In: Journal of Financial Econometrics. Oxford University Press (OUP), nbae017. ISSN 1479-8409. eISSN 1479-8417. Verfügbar unter: doi: 10.1093/jjfinec/nbae017
BibTex
@article{Daniele2024-07-31Spars-70642,
  year={2024},
  doi={10.1093/jjfinec/nbae017},
  title={A Sparse Approximate Factor Model for High-Dimensional Covariance Matrix Estimation and Portfolio Selection},
  issn={1479-8409},
  journal={Journal of Financial Econometrics},
  author={Daniele, Maurizio and Pohlmeier, Winfried and Zagidullina, Aygul},
  note={Article Number: nbae017}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70642">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>A Sparse Approximate Factor Model for High-Dimensional Covariance Matrix Estimation and Portfolio Selection</dcterms:title>
    <dc:contributor>Pohlmeier, Winfried</dc:contributor>
    <dc:contributor>Zagidullina, Aygul</dc:contributor>
    <dc:creator>Pohlmeier, Winfried</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-23T08:49:45Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70642"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Daniele, Maurizio</dc:contributor>
    <dcterms:issued>2024-07-31</dcterms:issued>
    <dc:creator>Zagidullina, Aygul</dc:creator>
    <dcterms:abstract>We propose a novel estimation approach for the covariance matrix based on the l1-regularized approximate factor model (AFM). Our sparse approximate factor (SAF) covariance estimator allows for the existence of weak factors and hence relaxes the pervasiveness assumption generally adopted for the standard AFM. We prove the consistency of the covariance matrix estimator under the Frobenius norm as well as the consistency of the factor loadings and the factors. Our Monte Carlo simulations reveal that the SAF covariance estimator has superior properties in finite samples for low and high dimensions and different designs of the covariance matrix. Moreover, in an out-of-sample portfolio forecasting application, the estimator uniformly outperforms alternative portfolio strategies based on alternative covariance estimation approaches and modeling strategies including the 1/N-strategy.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-23T08:49:45Z</dcterms:available>
    <dc:creator>Daniele, Maurizio</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Online First: Zeitschriftenartikel, die schon vor ihrer Zuordnung zu einem bestimmten Zeitschriftenheft (= Issue) online gestellt werden. Online First-Artikel werden auf der Homepage des Journals in der Verlagsfassung veröffentlicht.
Diese Publikation teilen