The Stor-e-Motion Visualization for Topic Evolution Tracking in Social Media Streams
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Nowadays, there are plenty of sources generating massive amounts of text streams in a continuous way. For example, the increasing popularity and the active use of social networks results in voluminous and fast-flowing data streams containing a large amount of user-generated data about almost any topic around the world. However, the observation and tracking of the ongoing evolution of topics in these unevenly distributed text streams is a challenging task for analysts, news reporters, or other users. This paper presents “Stor-e-Motion”, a real-time visualization to track and explore the ongoing evolution of topics’ frequency (i.e., importance), sentiment (i.e., emotion), and context (i.e., story) in user-defined topics over continuous flowing text streams.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WEILER, Andreas, Michael GROSSNIKLAUS, Franz WANNER, Marc H. SCHOLL, 2014. The Stor-e-Motion Visualization for Topic Evolution Tracking in Social Media Streams. EuroVis 2014 : Eurographics Conference on Visualization. Swansea, UK, 9. Juni 2014 - 13. Juni 2014. In: ELMQVIST, N., ed. and others. Eurographics Conference on Visualization : EuroVis 2014 ; Short Papers. The Eurographics Association, 2014BibTex
@inproceedings{Weiler2014Store-33614, year={2014}, title={The Stor-e-Motion Visualization for Topic Evolution Tracking in Social Media Streams}, url={http://eurovis.swansea.ac.uk/program.htm}, publisher={The Eurographics Association}, booktitle={Eurographics Conference on Visualization : EuroVis 2014 ; Short Papers}, editor={Elmqvist, N.}, author={Weiler, Andreas and Grossniklaus, Michael and Wanner, Franz and Scholl, Marc H.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33614"> <dcterms:abstract xml:lang="eng">Nowadays, there are plenty of sources generating massive amounts of text streams in a continuous way. For example, the increasing popularity and the active use of social networks results in voluminous and fast-flowing data streams containing a large amount of user-generated data about almost any topic around the world. However, the observation and tracking of the ongoing evolution of topics in these unevenly distributed text streams is a challenging task for analysts, news reporters, or other users. This paper presents “Stor-e-Motion”, a real-time visualization to track and explore the ongoing evolution of topics’ frequency (i.e., importance), sentiment (i.e., emotion), and context (i.e., story) in user-defined topics over continuous flowing text streams.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Grossniklaus, Michael</dc:creator> <dc:contributor>Wanner, Franz</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-04-19T14:52:57Z</dcterms:available> <dc:contributor>Weiler, Andreas</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-04-19T14:52:57Z</dc:date> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dc:creator>Scholl, Marc H.</dc:creator> <dcterms:title>The Stor-e-Motion Visualization for Topic Evolution Tracking in Social Media Streams</dcterms:title> <dc:contributor>Scholl, Marc H.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33614"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33614/3/Weiler_0-326855.pdf"/> <dc:creator>Weiler, Andreas</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33614/3/Weiler_0-326855.pdf"/> <dc:creator>Wanner, Franz</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Grossniklaus, Michael</dc:contributor> <dcterms:issued>2014</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>