Tackling Similarity Search for Soccer Match Analysis : Multimodal Distance Measure and Interactive Query Definition
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Analysts and coaches in soccer sports need to investigate large sets of past matches of opposing teams in short time to prepare their teams for upcoming matches. Thus, they need appropriate methods and systems supporting them in searching for soccer moves for comparison and explanation. For the search of similar soccer moves, established distance and similarity measures typically only take spatio-temporal features like shape and speed of movement into account. However, movement in invasive team sports such as soccer, includes much more than just a sequence of spatial locations. We survey the current state-of-the-art in trajectory distance measures and subsequently propose an enhanced similarity measure integrating spatial, player, event as well as high level context such as pressure into the process of similarity search. We present a visual search system supporting analysts in interactively identifying similar contextual enhanced soccer moves in a dataset containing more than 60 soccer matches. Our approach is evaluated by several expert studies. The results of the evaluation reveal the large potential of enhanced similarity measures in the future.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STEIN, Manuel, Halldor JANETZKO, Tobias SCHRECK, Daniel A. KEIM, 2018. Tackling Similarity Search for Soccer Match Analysis : Multimodal Distance Measure and Interactive Query Definition. In: IEEE Computer Graphics and Applications. 2018. ISSN 0272-1716. eISSN 1558-1756. Available under: doi: 10.1109/MCG.2019.2922224BibTex
@inproceedings{Stein2018Tackl-45051, year={2018}, doi={10.1109/MCG.2019.2922224}, title={Tackling Similarity Search for Soccer Match Analysis : Multimodal Distance Measure and Interactive Query Definition}, issn={0272-1716}, author={Stein, Manuel and Janetzko, Halldor and Schreck, Tobias and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45051"> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45051/1/Stein_2-khd5bc95fx2s5.pdf"/> <dc:contributor>Schreck, Tobias</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T15:35:59Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Janetzko, Halldor</dc:contributor> <dcterms:issued>2018</dcterms:issued> <dc:contributor>Stein, Manuel</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T15:35:59Z</dc:date> <dcterms:abstract xml:lang="eng">Analysts and coaches in soccer sports need to investigate large sets of past matches of opposing teams in short time to prepare their teams for upcoming matches. Thus, they need appropriate methods and systems supporting them in searching for soccer moves for comparison and explanation. For the search of similar soccer moves, established distance and similarity measures typically only take spatio-temporal features like shape and speed of movement into account. However, movement in invasive team sports such as soccer, includes much more than just a sequence of spatial locations. We survey the current state-of-the-art in trajectory distance measures and subsequently propose an enhanced similarity measure integrating spatial, player, event as well as high level context such as pressure into the process of similarity search. We present a visual search system supporting analysts in interactively identifying similar contextual enhanced soccer moves in a dataset containing more than 60 soccer matches. Our approach is evaluated by several expert studies. The results of the evaluation reveal the large potential of enhanced similarity measures in the future.</dcterms:abstract> <dc:creator>Janetzko, Halldor</dc:creator> <dc:creator>Stein, Manuel</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45051/1/Stein_2-khd5bc95fx2s5.pdf"/> <dc:creator>Schreck, Tobias</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45051"/> <dcterms:title>Tackling Similarity Search for Soccer Match Analysis : Multimodal Distance Measure and Interactive Query Definition</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>