Publikation:

Medical social media analytics via ranking and big learning : an image-based disease prediction study

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

IEEE, , ed.. Proceedings 2014 : IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC) ; October 18-19 , 2014 Wuhan, Hubei, China. IEEE, 2014, pp. 389-394. ISBN 978-1-4799-5352-3. Available under: doi: 10.1109/SPAC.2014.6982722

Zusammenfassung

Medical social media analytics becomes more and more popular nowadays because of its effectiveness in benefiting diverse health-care applications. In this study, the essential disease prediction task is investigated and realized via medical social media analytics techniques. To be specific, arterial spin labeling (ASL), an emerging functional magnetic resonance imaging modality, is utilized to provide image-based information and novel ranking as well as learning techniques are proposed and incorporated to fulfill the disease prediction task in dementia. To demonstrate its superiority, comprehensive statistical experiments are conducted with comparison to several conventional methods. Promising results are reported from this study.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), 18. Okt. 2014 - 19. Okt. 2014, Wuhan
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690HUANG, Wei, Peng ZHANG, Minmin SHEN, 2014. Medical social media analytics via ranking and big learning : an image-based disease prediction study. IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC). Wuhan, 18. Okt. 2014 - 19. Okt. 2014. In: IEEE, , ed.. Proceedings 2014 : IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC) ; October 18-19 , 2014 Wuhan, Hubei, China. IEEE, 2014, pp. 389-394. ISBN 978-1-4799-5352-3. Available under: doi: 10.1109/SPAC.2014.6982722
BibTex
@inproceedings{Huang2014Medic-30286,
  year={2014},
  doi={10.1109/SPAC.2014.6982722},
  title={Medical social media analytics via ranking and big learning : an image-based disease prediction study},
  isbn={978-1-4799-5352-3},
  publisher={IEEE},
  booktitle={Proceedings 2014 : IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC) ; October 18-19 , 2014 Wuhan, Hubei, China},
  pages={389--394},
  editor={IEEE},
  author={Huang, Wei and Zhang, Peng and Shen, Minmin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30286">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">Medical social media analytics becomes more and more popular nowadays because of its effectiveness in benefiting diverse health-care applications. In this study, the essential disease prediction task is investigated and realized via medical social media analytics techniques. To be specific, arterial spin labeling (ASL), an emerging functional magnetic resonance imaging modality, is utilized to provide image-based information and novel ranking as well as learning techniques are proposed and incorporated to fulfill the disease prediction task in dementia. To demonstrate its superiority, comprehensive statistical experiments are conducted with comparison to several conventional methods. Promising results are reported from this study.</dcterms:abstract>
    <dc:contributor>Shen, Minmin</dc:contributor>
    <dc:contributor>Zhang, Peng</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:creator>Zhang, Peng</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Medical social media analytics via ranking and big learning : an image-based disease prediction study</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T10:02:15Z</dc:date>
    <dc:contributor>Huang, Wei</dc:contributor>
    <dcterms:issued>2014</dcterms:issued>
    <dc:creator>Shen, Minmin</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30286"/>
    <dc:language>eng</dc:language>
    <dc:creator>Huang, Wei</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T10:02:15Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen