Publikation:

Modelling Different Volatility Components in High-Frequency Financial Returns

Lade...
Vorschaubild

Dateien

dp02_18.pdf
dp02_18.pdfGröße: 905.4 KBDownloads: 223

Datum

2002

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

This paper considers simultaneous modelling of seasonality, slowly changing un- conditional variance and conditional heteroskedasticity in high-frequency financial returns. A new approach, called a seasonal SEMIGARCH model, is proposed to perform this by introducing multiplicative seasonal and trend components into the GARCH model. A data-driven semiparametric algorithm is developed for estimat- ing the model. Asymptotic properties of the proposed estimators are investigated brie y. An approximate significance test of seasonality and the use of Monte Carlo confidence bounds for the trend are proposed. Practical performance of the pro- posal is investigated in detail using some German stock price returns. The approach proposed here provides a useful semiparametric extension of the GARCH model.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

High-frequency financial data, nonparametric regression, seasonality in volatility, semiparametric GARCH model, trend in volatility

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FENG, Yuanhua, 2002. Modelling Different Volatility Components in High-Frequency Financial Returns
BibTex
@techreport{Feng2002Model-12080,
  year={2002},
  series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie},
  title={Modelling Different Volatility Components in High-Frequency Financial Returns},
  number={2002/18},
  author={Feng, Yuanhua}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12080">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:42:33Z</dc:date>
    <dc:contributor>Feng, Yuanhua</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12080/1/dp02_18.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:42:33Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12080"/>
    <dc:format>application/pdf</dc:format>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">This paper considers simultaneous modelling of seasonality, slowly changing un- conditional variance and conditional heteroskedasticity in high-frequency financial returns. A new approach, called a seasonal SEMIGARCH model, is proposed to perform this by introducing multiplicative seasonal and trend components into the GARCH model. A data-driven semiparametric algorithm is developed for estimat- ing the model. Asymptotic properties of the proposed estimators are investigated brie y. An approximate significance test of seasonality and the use of Monte Carlo confidence bounds for the trend are proposed. Practical performance of the pro- posal is investigated in detail using some German stock price returns. The approach proposed here provides a useful semiparametric extension of the GARCH model.</dcterms:abstract>
    <dc:creator>Feng, Yuanhua</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12080/1/dp02_18.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:issued>2002</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Modelling Different Volatility Components in High-Frequency Financial Returns</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen