Modelling Different Volatility Components in High-Frequency Financial Returns

Loading...
Thumbnail Image
Date
2002
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie; 2002/18
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Working Paper/Technical Report
Publication status
Published in
Abstract
This paper considers simultaneous modelling of seasonality, slowly changing un- conditional variance and conditional heteroskedasticity in high-frequency financial returns. A new approach, called a seasonal SEMIGARCH model, is proposed to perform this by introducing multiplicative seasonal and trend components into the GARCH model. A data-driven semiparametric algorithm is developed for estimat- ing the model. Asymptotic properties of the proposed estimators are investigated brie y. An approximate significance test of seasonality and the use of Monte Carlo confidence bounds for the trend are proposed. Practical performance of the pro- posal is investigated in detail using some German stock price returns. The approach proposed here provides a useful semiparametric extension of the GARCH model.
Summary in another language
Subject (DDC)
330 Economics
Keywords
High-frequency financial data,nonparametric regression,seasonality in volatility,semiparametric GARCH model,trend in volatility
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690FENG, Yuanhua, 2002. Modelling Different Volatility Components in High-Frequency Financial Returns
BibTex
@techreport{Feng2002Model-12080,
  year={2002},
  series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie},
  title={Modelling Different Volatility Components in High-Frequency Financial Returns},
  number={2002/18},
  author={Feng, Yuanhua}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12080">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:42:33Z</dc:date>
    <dc:contributor>Feng, Yuanhua</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12080/1/dp02_18.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:42:33Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12080"/>
    <dc:format>application/pdf</dc:format>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">This paper considers simultaneous modelling of seasonality, slowly changing un- conditional variance and conditional heteroskedasticity in high-frequency financial returns. A new approach, called a seasonal SEMIGARCH model, is proposed to perform this by introducing multiplicative seasonal and trend components into the GARCH model. A data-driven semiparametric algorithm is developed for estimat- ing the model. Asymptotic properties of the proposed estimators are investigated brie y. An approximate significance test of seasonality and the use of Monte Carlo confidence bounds for the trend are proposed. Practical performance of the pro- posal is investigated in detail using some German stock price returns. The approach proposed here provides a useful semiparametric extension of the GARCH model.</dcterms:abstract>
    <dc:creator>Feng, Yuanhua</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12080/1/dp02_18.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:issued>2002</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Modelling Different Volatility Components in High-Frequency Financial Returns</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Refereed