Born‐digital biodiversity data : Millions and billions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Given the dramatic pace of change of our planet, we need rapid collection of environmental data to document how species are coping and to evaluate the impact of our conservation interventions. To address this need, new classes of “born digital” biodiversity records are now being collected and curated many orders of magnitude faster than traditional data. In addition to the millions of citizen science observations of species that have been accumulating over the last decade, the last few years have seen a surge of sensor data, with eMammal's camera trap archive passing 1 million photo‐vouchered specimens and Movebank's animal tracking database recently passing 1.5 billion animal locations. Data from digital sensors have other advantages over visual citizen science observation in that the level of survey effort is intrinsically documented and they can preserve digital vouchers that can be used to verify species identity. These novel digital specimens are leading spatial ecology into the era of Big Data and will require a big tent of collaborating organizations to make these databases sustainable and durable. We urge institutions to recognize the future of born‐digital records and invest in proper curation and standards so we can make the most of these records to inform management, inspire conservation action and tell natural history stories about life on the planet.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KAYS, Roland, William J. MCSHEA, Martin WIKELSKI, 2020. Born‐digital biodiversity data : Millions and billions. In: Diversity and Distributions. Wiley. 2020, 26(5), pp. 644-648. ISSN 1366-9516. eISSN 1472-4642. Available under: doi: 10.1111/ddi.12993BibTex
@article{Kays2020-05Bornd-48600, year={2020}, doi={10.1111/ddi.12993}, title={Born‐digital biodiversity data : Millions and billions}, number={5}, volume={26}, issn={1366-9516}, journal={Diversity and Distributions}, pages={644--648}, author={Kays, Roland and McShea, William J. and Wikelski, Martin} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48600"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>McShea, William J.</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Wikelski, Martin</dc:creator> <dcterms:issued>2020-05</dcterms:issued> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48600/1/Kays_2-kk50r5exdzug6.pdf"/> <dc:contributor>Wikelski, Martin</dc:contributor> <dcterms:title>Born‐digital biodiversity data : Millions and billions</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48600"/> <dc:contributor>Kays, Roland</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48600/1/Kays_2-kk50r5exdzug6.pdf"/> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-02-12T08:03:13Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>McShea, William J.</dc:creator> <dc:creator>Kays, Roland</dc:creator> <dcterms:abstract xml:lang="eng">Given the dramatic pace of change of our planet, we need rapid collection of environmental data to document how species are coping and to evaluate the impact of our conservation interventions. To address this need, new classes of “born digital” biodiversity records are now being collected and curated many orders of magnitude faster than traditional data. In addition to the millions of citizen science observations of species that have been accumulating over the last decade, the last few years have seen a surge of sensor data, with eMammal's camera trap archive passing 1 million photo‐vouchered specimens and Movebank's animal tracking database recently passing 1.5 billion animal locations. Data from digital sensors have other advantages over visual citizen science observation in that the level of survey effort is intrinsically documented and they can preserve digital vouchers that can be used to verify species identity. These novel digital specimens are leading spatial ecology into the era of Big Data and will require a big tent of collaborating organizations to make these databases sustainable and durable. We urge institutions to recognize the future of born‐digital records and invest in proper curation and standards so we can make the most of these records to inform management, inspire conservation action and tell natural history stories about life on the planet.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-02-12T08:03:13Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> </rdf:Description> </rdf:RDF>