Real Algebra : A First Course

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2022
Autor:innen
Knebusch, Manfred
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
978-3-031-09799-7
Bibliografische Daten
Verlag
Cham: Springer
Schriftenreihe
Universitext (UTX)
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Monographie
Publikationsstatus
Published
Erschienen in
Zusammenfassung

This book provides an introduction to fundamental methods and techniques of algebra over ordered fields. It is a revised and updated translation of the classic textbook Einführung in die reelle Algebra. Beginning with the basics of ordered fields and their real closures, the book proceeds to discuss methods for counting the number of real roots of polynomials. Followed by a thorough introduction to Krull valuations, this culminates in Artin's solution of Hilbert's 17th Problem. Next, the fundamental concept of the real spectrum of a commutative ring is introduced with applications. The final chapter gives a brief overview of important developments in real algebra and geometry—as far as they are directly related to the contents of the earlier chapters—since the publication of the original German edition. Real Algebra is aimed at advanced undergraduate and beginning graduate students who have a good grounding in linear algebra, field theory and ring theory. It also provides a carefully written reference for specialists in real algebra, real algebraic geometry and related fields.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
real algebra, real algebraic geometry, Hilbert's 17th problem, spectral space, real spectrum, positivstellensatz, ordered fields, ordered rings, orderings, preorderings, valuations, valuation rings, semialgebraic sets, nullstellensatz
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KNEBUSCH, Manfred, Claus SCHEIDERER, 2022. Real Algebra : A First Course. Cham: Springer. ISBN 978-3-031-09799-7
BibTex
@book{Knebusch2022Algeb-70909,
  year={2022},
  doi={10.1007/978-3-031-09800-0},
  isbn={978-3-031-09799-7},
  publisher={Springer},
  address={Cham},
  series={Universitext (UTX)},
  title={Real Algebra : A First Course},
  author={Knebusch, Manfred and Scheiderer, Claus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70909">
    <dc:creator>Knebusch, Manfred</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-10-07T09:02:41Z</dcterms:available>
    <dcterms:abstract>This book provides an introduction to fundamental methods and techniques of algebra over ordered fields. It is a revised and updated translation of the classic textbook Einführung in die reelle Algebra.
Beginning with the basics of ordered fields and their real closures, the book proceeds to discuss methods for counting the number of real roots of polynomials. Followed by a thorough introduction to Krull valuations, this culminates in Artin's solution of Hilbert's 17th Problem. Next, the fundamental concept of the real spectrum of a commutative ring is introduced with applications. The final chapter gives a brief overview of important developments in real algebra and geometry—as far as they are directly related to the contents of the earlier chapters—since the publication of the original German edition.
 Real Algebra is aimed at advanced undergraduate and beginning graduate students who have a good grounding in linear algebra, field theory and ring theory. It also provides a carefully written reference for specialists in real algebra, real algebraic geometry and related fields.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:publisher>Springer</dc:publisher>
    <dc:creator>Scheiderer, Claus</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:title>Real Algebra : A First Course</dcterms:title>
    <dc:contributor>Scheiderer, Claus</dc:contributor>
    <dcterms:issued>2022</dcterms:issued>
    <dc:contributor>Knebusch, Manfred</dc:contributor>
    <bibo:issn>978-3-031-09799-7</bibo:issn>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70909"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-10-07T09:02:41Z</dc:date>
    <dc:publisher>Cham</dc:publisher>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen