Publikation:

Real Algebra : A First Course

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2022

Autor:innen

Knebusch, Manfred

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

978-3-031-09799-7
Bibliografische Daten

Verlag

Cham: Springer

Schriftenreihe

Universitext (UTX)

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Monographie
Publikationsstatus
Published

Erschienen in

Zusammenfassung

This book provides an introduction to fundamental methods and techniques of algebra over ordered fields. It is a revised and updated translation of the classic textbook Einführung in die reelle Algebra. Beginning with the basics of ordered fields and their real closures, the book proceeds to discuss methods for counting the number of real roots of polynomials. Followed by a thorough introduction to Krull valuations, this culminates in Artin's solution of Hilbert's 17th Problem. Next, the fundamental concept of the real spectrum of a commutative ring is introduced with applications. The final chapter gives a brief overview of important developments in real algebra and geometry—as far as they are directly related to the contents of the earlier chapters—since the publication of the original German edition. Real Algebra is aimed at advanced undergraduate and beginning graduate students who have a good grounding in linear algebra, field theory and ring theory. It also provides a carefully written reference for specialists in real algebra, real algebraic geometry and related fields.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

real algebra, real algebraic geometry, Hilbert's 17th problem, spectral space, real spectrum, positivstellensatz, ordered fields, ordered rings, orderings, preorderings, valuations, valuation rings, semialgebraic sets, nullstellensatz

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KNEBUSCH, Manfred, Claus SCHEIDERER, 2022. Real Algebra : A First Course. Cham: Springer. ISBN 978-3-031-09799-7
BibTex
@book{Knebusch2022Algeb-70909,
  year={2022},
  doi={10.1007/978-3-031-09800-0},
  isbn={978-3-031-09799-7},
  publisher={Springer},
  address={Cham},
  series={Universitext (UTX)},
  title={Real Algebra : A First Course},
  author={Knebusch, Manfred and Scheiderer, Claus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70909">
    <dc:creator>Knebusch, Manfred</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-10-07T09:02:41Z</dcterms:available>
    <dcterms:abstract>This book provides an introduction to fundamental methods and techniques of algebra over ordered fields. It is a revised and updated translation of the classic textbook Einführung in die reelle Algebra.
Beginning with the basics of ordered fields and their real closures, the book proceeds to discuss methods for counting the number of real roots of polynomials. Followed by a thorough introduction to Krull valuations, this culminates in Artin's solution of Hilbert's 17th Problem. Next, the fundamental concept of the real spectrum of a commutative ring is introduced with applications. The final chapter gives a brief overview of important developments in real algebra and geometry—as far as they are directly related to the contents of the earlier chapters—since the publication of the original German edition.
 Real Algebra is aimed at advanced undergraduate and beginning graduate students who have a good grounding in linear algebra, field theory and ring theory. It also provides a carefully written reference for specialists in real algebra, real algebraic geometry and related fields.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:publisher>Springer</dc:publisher>
    <dc:creator>Scheiderer, Claus</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:title>Real Algebra : A First Course</dcterms:title>
    <dc:contributor>Scheiderer, Claus</dc:contributor>
    <dcterms:issued>2022</dcterms:issued>
    <dc:contributor>Knebusch, Manfred</dc:contributor>
    <bibo:issn>978-3-031-09799-7</bibo:issn>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70909"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-10-07T09:02:41Z</dc:date>
    <dc:publisher>Cham</dc:publisher>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen