A new method for characterising shared space use networks using animal trapping data

Lade...
Vorschaubild
Dateien
Wanelik_2-kmiq74atv1l25.pdf
Wanelik_2-kmiq74atv1l25.pdfGröße: 2.12 MBDownloads: 53
Datum
2022
Autor:innen
Wanelik, Klara M.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Behavioral Ecology and Sociobiology. Springer. 2022, 76(9), 127. ISSN 0340-5443. eISSN 1432-0762. Available under: doi: 10.1007/s00265-022-03222-5
Zusammenfassung

Studying the social behaviour of small or cryptic species often relies on constructing networks from sparse point-based observations of individuals (e.g. live trapping data). A common approach assumes that individuals that have been detected sequentially in the same trapping location will also be more likely to have come into indirect and/or direct contact. However, there is very little guidance on how much data are required for making robust networks from such data. In this study, we highlight that sequential trap sharing networks broadly capture shared space use (and, hence, the potential for contact) and that it may be more parsimonious to directly model shared space use. We first use empirical data to show that characteristics of how animals use space can help us to establish new ways to model the potential for individuals to come into contact. We then show that a method that explicitly models individuals’ home ranges and subsequent overlap in space among individuals (spatial overlap networks) requires fewer data for inferring observed networks that are more strongly correlated with the true shared space use network (relative to sequential trap sharing networks). Furthermore, we show that shared space use networks based on estimating spatial overlap are also more powerful for detecting biological effects. Finally, we discuss when it is appropriate to make inferences about social interactions from shared space use. Our study confirms the potential for using sparse trapping data from cryptic species to address a range of important questions in ecology and evolution.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690WANELIK, Klara M., Damien R. FARINE, 2022. A new method for characterising shared space use networks using animal trapping data. In: Behavioral Ecology and Sociobiology. Springer. 2022, 76(9), 127. ISSN 0340-5443. eISSN 1432-0762. Available under: doi: 10.1007/s00265-022-03222-5
BibTex
@article{Wanelik2022-09metho-59634,
  year={2022},
  doi={10.1007/s00265-022-03222-5},
  title={A new method for characterising shared space use networks using animal trapping data},
  number={9},
  volume={76},
  issn={0340-5443},
  journal={Behavioral Ecology and Sociobiology},
  author={Wanelik, Klara M. and Farine, Damien R.},
  note={Article Number: 127}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59634">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:abstract xml:lang="eng">Studying the social behaviour of small or cryptic species often relies on constructing networks from sparse point-based observations of individuals (e.g. live trapping data). A common approach assumes that individuals that have been detected sequentially in the same trapping location will also be more likely to have come into indirect and/or direct contact. However, there is very little guidance on how much data are required for making robust networks from such data. In this study, we highlight that sequential trap sharing networks broadly capture shared space use (and, hence, the potential for contact) and that it may be more parsimonious to directly model shared space use. We first use empirical data to show that characteristics of how animals use space can help us to establish new ways to model the potential for individuals to come into contact. We then show that a method that explicitly models individuals’ home ranges and subsequent overlap in space among individuals (spatial overlap networks) requires fewer data for inferring observed networks that are more strongly correlated with the true shared space use network (relative to sequential trap sharing networks). Furthermore, we show that shared space use networks based on estimating spatial overlap are also more powerful for detecting biological effects. Finally, we discuss when it is appropriate to make inferences about social interactions from shared space use. Our study confirms the potential for using sparse trapping data from cryptic species to address a range of important questions in ecology and evolution.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-05T08:11:25Z</dc:date>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59634"/>
    <dc:creator>Wanelik, Klara M.</dc:creator>
    <dcterms:title>A new method for characterising shared space use networks using animal trapping data</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-05T08:11:25Z</dcterms:available>
    <dc:contributor>Wanelik, Klara M.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59634/1/Wanelik_2-kmiq74atv1l25.pdf"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:issued>2022-09</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Farine, Damien R.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59634/1/Wanelik_2-kmiq74atv1l25.pdf"/>
    <dc:creator>Farine, Damien R.</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen