Publikation:

A new method for characterising shared space use networks using animal trapping data

Lade...
Vorschaubild

Dateien

Wanelik_2-kmiq74atv1l25.pdf
Wanelik_2-kmiq74atv1l25.pdfGröße: 2.12 MBDownloads: 60

Datum

2022

Autor:innen

Wanelik, Klara M.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Behavioral Ecology and Sociobiology. Springer. 2022, 76(9), 127. ISSN 0340-5443. eISSN 1432-0762. Available under: doi: 10.1007/s00265-022-03222-5

Zusammenfassung

Studying the social behaviour of small or cryptic species often relies on constructing networks from sparse point-based observations of individuals (e.g. live trapping data). A common approach assumes that individuals that have been detected sequentially in the same trapping location will also be more likely to have come into indirect and/or direct contact. However, there is very little guidance on how much data are required for making robust networks from such data. In this study, we highlight that sequential trap sharing networks broadly capture shared space use (and, hence, the potential for contact) and that it may be more parsimonious to directly model shared space use. We first use empirical data to show that characteristics of how animals use space can help us to establish new ways to model the potential for individuals to come into contact. We then show that a method that explicitly models individuals’ home ranges and subsequent overlap in space among individuals (spatial overlap networks) requires fewer data for inferring observed networks that are more strongly correlated with the true shared space use network (relative to sequential trap sharing networks). Furthermore, we show that shared space use networks based on estimating spatial overlap are also more powerful for detecting biological effects. Finally, we discuss when it is appropriate to make inferences about social interactions from shared space use. Our study confirms the potential for using sparse trapping data from cryptic species to address a range of important questions in ecology and evolution.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690WANELIK, Klara M., Damien R. FARINE, 2022. A new method for characterising shared space use networks using animal trapping data. In: Behavioral Ecology and Sociobiology. Springer. 2022, 76(9), 127. ISSN 0340-5443. eISSN 1432-0762. Available under: doi: 10.1007/s00265-022-03222-5
BibTex
@article{Wanelik2022-09metho-59634,
  year={2022},
  doi={10.1007/s00265-022-03222-5},
  title={A new method for characterising shared space use networks using animal trapping data},
  number={9},
  volume={76},
  issn={0340-5443},
  journal={Behavioral Ecology and Sociobiology},
  author={Wanelik, Klara M. and Farine, Damien R.},
  note={Article Number: 127}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59634">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:abstract xml:lang="eng">Studying the social behaviour of small or cryptic species often relies on constructing networks from sparse point-based observations of individuals (e.g. live trapping data). A common approach assumes that individuals that have been detected sequentially in the same trapping location will also be more likely to have come into indirect and/or direct contact. However, there is very little guidance on how much data are required for making robust networks from such data. In this study, we highlight that sequential trap sharing networks broadly capture shared space use (and, hence, the potential for contact) and that it may be more parsimonious to directly model shared space use. We first use empirical data to show that characteristics of how animals use space can help us to establish new ways to model the potential for individuals to come into contact. We then show that a method that explicitly models individuals’ home ranges and subsequent overlap in space among individuals (spatial overlap networks) requires fewer data for inferring observed networks that are more strongly correlated with the true shared space use network (relative to sequential trap sharing networks). Furthermore, we show that shared space use networks based on estimating spatial overlap are also more powerful for detecting biological effects. Finally, we discuss when it is appropriate to make inferences about social interactions from shared space use. Our study confirms the potential for using sparse trapping data from cryptic species to address a range of important questions in ecology and evolution.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-05T08:11:25Z</dc:date>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59634"/>
    <dc:creator>Wanelik, Klara M.</dc:creator>
    <dcterms:title>A new method for characterising shared space use networks using animal trapping data</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-05T08:11:25Z</dcterms:available>
    <dc:contributor>Wanelik, Klara M.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59634/1/Wanelik_2-kmiq74atv1l25.pdf"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:issued>2022-09</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Farine, Damien R.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59634/1/Wanelik_2-kmiq74atv1l25.pdf"/>
    <dc:creator>Farine, Damien R.</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen