Optimal Leaf Ordering of Complete Binary Trees
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Ordering a set of items so as to minimize the sum of distances between consecutive elements is a fundamental optimization problem occurring in many settings. While it is View the MathML source-hard in general, it becomes polynomially solvable if the set of feasible permutations is restricted to be compatible with a tree of bounded degree. We present a new algorithm for the elementary case of ordering the n leaves of a binary tree with height View the MathML source. Our algorithm requires View the MathML source time and View the MathML source space. While the running time is a log-factor away from being asymptotically optimal, the algorithm is conceptually simple, easy to implement, and highly practical. Its implementation requires little more than a few bit-manipulations.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BRANDES, Ulrik, 2007. Optimal Leaf Ordering of Complete Binary Trees. In: Journal of Discrete Algorithms. 2007, 5(3), pp. 546-552. Available under: doi: 10.1016/j.jda.2006.09.003BibTex
@article{Brandes2007Optim-3022, year={2007}, doi={10.1016/j.jda.2006.09.003}, title={Optimal Leaf Ordering of Complete Binary Trees}, number={3}, volume={5}, journal={Journal of Discrete Algorithms}, pages={546--552}, author={Brandes, Ulrik} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/3022"> <dc:contributor>Brandes, Ulrik</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:bibliographicCitation>Publ. in: Journal of Discrete Algorithms 5 (2007), 3, pp. 546-552</dcterms:bibliographicCitation> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/3022/1/Brandes_opus-117791.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/3022/1/Brandes_opus-117791.pdf"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/3022"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Optimal Leaf Ordering of Complete Binary Trees</dcterms:title> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T10:15:48Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:issued>2007</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T10:15:48Z</dc:date> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:creator>Brandes, Ulrik</dc:creator> <dcterms:abstract xml:lang="eng">Ordering a set of items so as to minimize the sum of distances between consecutive elements is a fundamental optimization problem occurring in many settings. While it is View the MathML source-hard in general, it becomes polynomially solvable if the set of feasible permutations is restricted to be compatible with a tree of bounded degree. We present a new algorithm for the elementary case of ordering the n leaves of a binary tree with height View the MathML source. Our algorithm requires View the MathML source time and View the MathML source space. While the running time is a log-factor away from being asymptotically optimal, the algorithm is conceptually simple, easy to implement, and highly practical. Its implementation requires little more than a few bit-manipulations.</dcterms:abstract> </rdf:Description> </rdf:RDF>