Multiobjective PDE-constrained optimization using the Reduced-Basis Method
Multiobjective PDE-constrained optimization using the Reduced-Basis Method
Loading...
Date
2013
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Working Paper/Technical Report
Publication status
Published in
Abstract
In this paper the reduced basis method is utilized to solve multiob- jective optimization problems governed by linear variational equations. These problems often arise in practical applications, where the quality of the system behavior has to be measured by more than one criterium. For the numerical solution the weighting sum method is applied. This approach leads to an algo- rithm, where many parameterized quadratic optimization problems are solved very efficiently by a appropriate reduced basis approximation. Further, the number of parameter variations is reduced by a sensitivity analysis for the parameterized objective.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
IAPICHINO, Laura, Stefan ULBRICH, Stefan VOLKWEIN, 2013. Multiobjective PDE-constrained optimization using the Reduced-Basis MethodBibTex
@techreport{Iapichino2013Multi-25019, year={2013}, title={Multiobjective PDE-constrained optimization using the Reduced-Basis Method}, author={Iapichino, Laura and Ulbrich, Stefan and Volkwein, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25019"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:issued>2013</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Ulbrich, Stefan</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25019/1/Iapichino_250190.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-11-07T13:05:48Z</dcterms:available> <dc:contributor>Iapichino, Laura</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Iapichino, Laura</dc:creator> <dcterms:title>Multiobjective PDE-constrained optimization using the Reduced-Basis Method</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25019/1/Iapichino_250190.pdf"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Volkwein, Stefan</dc:creator> <dc:contributor>Volkwein, Stefan</dc:contributor> <dc:contributor>Ulbrich, Stefan</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-11-07T13:05:48Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25019"/> <dcterms:abstract xml:lang="eng">In this paper the reduced basis method is utilized to solve multiob- jective optimization problems governed by linear variational equations. These problems often arise in practical applications, where the quality of the system behavior has to be measured by more than one criterium. For the numerical solution the weighting sum method is applied. This approach leads to an algo- rithm, where many parameterized quadratic optimization problems are solved very efficiently by a appropriate reduced basis approximation. Further, the number of parameter variations is reduced by a sensitivity analysis for the parameterized objective.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Version History
You are currently viewing version 1 of the item.