Multiobjective PDE-constrained optimization using the Reduced-Basis Method

Loading...
Thumbnail Image
Date
2013
Authors
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Working Paper/Technical Report
Publication status
Published in
Abstract
In this paper the reduced basis method is utilized to solve multiob- jective optimization problems governed by linear variational equations. These problems often arise in practical applications, where the quality of the system behavior has to be measured by more than one criterium. For the numerical solution the weighting sum method is applied. This approach leads to an algo- rithm, where many parameterized quadratic optimization problems are solved very efficiently by a appropriate reduced basis approximation. Further, the number of parameter variations is reduced by a sensitivity analysis for the parameterized objective.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690IAPICHINO, Laura, Stefan ULBRICH, Stefan VOLKWEIN, 2013. Multiobjective PDE-constrained optimization using the Reduced-Basis Method
BibTex
@techreport{Iapichino2013Multi-25019,
  year={2013},
  title={Multiobjective PDE-constrained optimization using the Reduced-Basis Method},
  author={Iapichino, Laura and Ulbrich, Stefan and Volkwein, Stefan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25019">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:issued>2013</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Ulbrich, Stefan</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25019/1/Iapichino_250190.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-11-07T13:05:48Z</dcterms:available>
    <dc:contributor>Iapichino, Laura</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Iapichino, Laura</dc:creator>
    <dcterms:title>Multiobjective PDE-constrained optimization using the Reduced-Basis Method</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25019/1/Iapichino_250190.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Volkwein, Stefan</dc:creator>
    <dc:contributor>Volkwein, Stefan</dc:contributor>
    <dc:contributor>Ulbrich, Stefan</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-11-07T13:05:48Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25019"/>
    <dcterms:abstract xml:lang="eng">In this paper the reduced basis method is utilized to solve multiob- jective optimization problems governed by linear variational equations. These problems often arise in practical applications, where the quality of the system behavior has to be measured by more than one criterium. For the numerical solution the weighting sum method is applied. This approach leads to an algo- rithm, where many parameterized quadratic optimization problems are solved very efficiently by a appropriate reduced basis approximation. Further, the number of parameter variations is reduced by a sensitivity analysis for the parameterized objective.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed

Version History

Now showing 1 - 1 of 1
VersionDateSummary
1*
2013-11-07 13:05:48
* Selected version