Multiobjective PDE-constrained optimization using the Reduced-Basis Method
Lade...
Dateien
Datum
2013
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung
In this paper the reduced basis method is utilized to solve multiob- jective optimization problems governed by linear variational equations. These problems often arise in practical applications, where the quality of the system behavior has to be measured by more than one criterium. For the numerical solution the weighting sum method is applied. This approach leads to an algo- rithm, where many parameterized quadratic optimization problems are solved very efficiently by a appropriate reduced basis approximation. Further, the number of parameter variations is reduced by a sensitivity analysis for the parameterized objective.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
IAPICHINO, Laura, Stefan ULBRICH, Stefan VOLKWEIN, 2013. Multiobjective PDE-constrained optimization using the Reduced-Basis MethodBibTex
@techreport{Iapichino2013Multi-25019, year={2013}, title={Multiobjective PDE-constrained optimization using the Reduced-Basis Method}, author={Iapichino, Laura and Ulbrich, Stefan and Volkwein, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25019"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:issued>2013</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Ulbrich, Stefan</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25019/1/Iapichino_250190.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-11-07T13:05:48Z</dcterms:available> <dc:contributor>Iapichino, Laura</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Iapichino, Laura</dc:creator> <dcterms:title>Multiobjective PDE-constrained optimization using the Reduced-Basis Method</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25019/1/Iapichino_250190.pdf"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Volkwein, Stefan</dc:creator> <dc:contributor>Volkwein, Stefan</dc:contributor> <dc:contributor>Ulbrich, Stefan</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-11-07T13:05:48Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25019"/> <dcterms:abstract xml:lang="eng">In this paper the reduced basis method is utilized to solve multiob- jective optimization problems governed by linear variational equations. These problems often arise in practical applications, where the quality of the system behavior has to be measured by more than one criterium. For the numerical solution the weighting sum method is applied. This approach leads to an algo- rithm, where many parameterized quadratic optimization problems are solved very efficiently by a appropriate reduced basis approximation. Further, the number of parameter variations is reduced by a sensitivity analysis for the parameterized objective.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen
Versionsgeschichte
You are currently viewing version 1 of the item.