Publikation:

Multi-Label Classification by ART-based Neural Networks and Hierarchy Extraction

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2010

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

IEEE, , ed.. The 2010 International Joint Conference on Neural Networks : (IJCNN 2010) ; Barcelona, Spain, 18 - 23 July 2010 ; [associated with the 2010 IEEE World Congress on Computational Intelligence (IEEE WCCI 2010)]. Piscataway, NJ: IEEE, 2010, pp. 2788-2796. ISBN 978-1-4244-6916-1

Zusammenfassung

This paper presents a data mining system for multi-label classification and hierarchy extraction from the predictions provided by a multi-label classifier. Classes in multilabel classification tasks are often hierarchically organized and the hierarchy is assumed to be known. A much less investigated approach and a more challenging task, however, is to suppose that the underlying class taxonomy is unknown and that a data mining system can infer it automatically. In our setting, the proposed system is trained with multi-label data and is subsequently able to produce multi-label predictions along with hierarchical relationships between classes. The hierarchy extraction algorithm is based on building association rules from label co-occurrences. Within the framework we examine the performance of two recently introduced multi-label extensions of Adaptive Resonance Theory (ART)-based neural networks: Multi-Label Fuzzy ARTMAP (ML-FAM) and Multi-Label Fuzzy Adaptive Resonance Associative Map (ML-ARAM) in comparison with two state-of-the-art classifiers Multi-Label k-Nearest Neighbors (ML-kNN) and BoosTexter, taking into account the quality of hierarchy extraction. We also develop a novel distance measure for the quantitative evaluation of the derived class hierarchies and compare it with two other distance measures. To demonstrate the effectiveness of the proposed approach, experiments on several benchmark datasets have been performed.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Multi-label, Adaptive Resonance Theory, Document Classification

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BENITES, Fernando, Florian BRUCKER, Elena SAPOZHNIKOVA, 2010. Multi-Label Classification by ART-based Neural Networks and Hierarchy Extraction. In: IEEE, , ed.. The 2010 International Joint Conference on Neural Networks : (IJCNN 2010) ; Barcelona, Spain, 18 - 23 July 2010 ; [associated with the 2010 IEEE World Congress on Computational Intelligence (IEEE WCCI 2010)]. Piscataway, NJ: IEEE, 2010, pp. 2788-2796. ISBN 978-1-4244-6916-1
BibTex
@inproceedings{Benites2010Multi-3321,
  year={2010},
  title={Multi-Label Classification by ART-based Neural Networks and Hierarchy Extraction},
  isbn={978-1-4244-6916-1},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={The 2010 International Joint Conference on Neural Networks : (IJCNN 2010) ; Barcelona, Spain, 18 - 23 July 2010 ; [associated with the 2010 IEEE World Congress on Computational Intelligence (IEEE WCCI 2010)]},
  pages={2788--2796},
  editor={IEEE},
  author={Benites, Fernando and Brucker, Florian and Sapozhnikova, Elena}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/3321">
    <dcterms:title>Multi-Label Classification by ART-based Neural Networks and Hierarchy Extraction</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Benites, Fernando</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T13:15:40Z</dcterms:available>
    <dc:contributor>Sapozhnikova, Elena</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Sapozhnikova, Elena</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T13:15:40Z</dc:date>
    <dc:creator>Benites, Fernando</dc:creator>
    <dcterms:issued>2010</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Brucker, Florian</dc:creator>
    <dcterms:abstract xml:lang="eng">This paper presents a data mining system for multi-label classification and hierarchy extraction from the predictions provided by a multi-label classifier. Classes in multilabel classification tasks are often hierarchically organized and the hierarchy is assumed to be known. A much less investigated approach and a more challenging task, however, is to suppose that the underlying class taxonomy is unknown and that a data mining system can infer it automatically. In our setting, the proposed system is trained with multi-label data and is subsequently able to produce multi-label predictions along with hierarchical relationships between classes. The hierarchy extraction algorithm is based on building association rules from label co-occurrences. Within the framework we examine the performance of two recently introduced multi-label extensions of Adaptive Resonance Theory (ART)-based neural networks: Multi-Label Fuzzy ARTMAP (ML-FAM) and Multi-Label Fuzzy Adaptive Resonance Associative Map (ML-ARAM) in comparison with two state-of-the-art classifiers Multi-Label k-Nearest Neighbors (ML-kNN) and BoosTexter, taking into account the quality of hierarchy extraction. We also develop a novel distance measure for the quantitative evaluation of the derived class hierarchies and compare it with two other distance measures. To demonstrate the effectiveness of the proposed approach, experiments on several benchmark datasets have been performed.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/3321"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:bibliographicCitation>Publ. in: Proceedings of the International Joint Conference on Neural Network, July 18-23, Barcelona, 2010, pp. 2788 2796</dcterms:bibliographicCitation>
    <dc:contributor>Brucker, Florian</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen