POD-Based Bicriterial Optimal Control of Time-Dependent Convection-Diffusion Equations with Basis Update
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this thesis we consider a bicriterial optimal control problem governed by the heat equation with a convection term and bilateral control constraints which arise in HVAC operation of building applications. Furthermore, we allow the convection term to be time-dependent and investigate its influence on the optimal control problem. For this purpose, we apply the Euclidean reference point method, which is a special case of the reference point method, in order to transform the bicriterial optimal control problem into a series of scalar-valued optimal control problems. In order to make the computation effort feasible, we apply the proper orthogonal decomposition method (POD) which is a well-known model-order reduction technique. In the context of this thesis, we derive new a-priori estimates for the approximation error in the objective and control space. In our numerical experiments we analyse the results and compare them with the results for the time-independent convection term. Furthermore, new strategies for efficiently updating the POD basis in the optimization process are proposed and tested numerically.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MAKAROV, Eugen, 2018. POD-Based Bicriterial Optimal Control of Time-Dependent Convection-Diffusion Equations with Basis Update [Master thesis]. Konstanz: Universität KonstanzBibTex
@mastersthesis{Makarov2018PODBa-43432, year={2018}, title={POD-Based Bicriterial Optimal Control of Time-Dependent Convection-Diffusion Equations with Basis Update}, address={Konstanz}, school={Universität Konstanz}, author={Makarov, Eugen} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43432"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43432/3/Makarov_2-l0r8dud5l8z37.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-08T07:20:13Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43432"/> <dc:creator>Makarov, Eugen</dc:creator> <dcterms:issued>2018</dcterms:issued> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Makarov, Eugen</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43432/3/Makarov_2-l0r8dud5l8z37.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">In this thesis we consider a bicriterial optimal control problem governed by the heat equation with a convection term and bilateral control constraints which arise in HVAC operation of building applications. Furthermore, we allow the convection term to be time-dependent and investigate its influence on the optimal control problem. For this purpose, we apply the Euclidean reference point method, which is a special case of the reference point method, in order to transform the bicriterial optimal control problem into a series of scalar-valued optimal control problems. In order to make the computation effort feasible, we apply the proper orthogonal decomposition method (POD) which is a well-known model-order reduction technique. In the context of this thesis, we derive new a-priori estimates for the approximation error in the objective and control space. In our numerical experiments we analyse the results and compare them with the results for the time-independent convection term. Furthermore, new strategies for efficiently updating the POD basis in the optimization process are proposed and tested numerically.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>POD-Based Bicriterial Optimal Control of Time-Dependent Convection-Diffusion Equations with Basis Update</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-08T07:20:13Z</dcterms:available> </rdf:Description> </rdf:RDF>