POD-Based Bicriterial Optimal Control of Time-Dependent Convection-Diffusion Equations with Basis Update
POD-Based Bicriterial Optimal Control of Time-Dependent Convection-Diffusion Equations with Basis Update
No Thumbnail Available
Date
2018
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Diploma thesis
Publication status
Published
Published in
Abstract
In this thesis we consider a bicriterial optimal control problem governed by the heat equation with a convection term and bilateral control constraints which arise in HVAC operation of building applications. Furthermore, we allow the convection term to be time-dependent and investigate its influence on the optimal control problem. For this purpose, we apply the Euclidean reference point method, which is a special case of the reference point method, in order to transform the bicriterial optimal control problem into a series of scalar-valued optimal control problems. In order to make the computation effort feasible, we apply the proper orthogonal decomposition method (POD) which is a well-known model-order reduction technique. In the context of this thesis, we derive new a-priori estimates for the approximation error in the objective and control space. In our numerical experiments we analyse the results and compare them with the results for the time-independent convection term. Furthermore, new strategies for efficiently updating the POD basis in the optimization process are proposed and tested numerically.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
MAKAROV, Eugen, 2018. POD-Based Bicriterial Optimal Control of Time-Dependent Convection-Diffusion Equations with Basis Update [Master thesis]. Konstanz: Universität KonstanzBibTex
@mastersthesis{Makarov2018PODBa-43432, year={2018}, title={POD-Based Bicriterial Optimal Control of Time-Dependent Convection-Diffusion Equations with Basis Update}, address={Konstanz}, school={Universität Konstanz}, author={Makarov, Eugen} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43432"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43432/3/Makarov_2-l0r8dud5l8z37.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-08T07:20:13Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43432"/> <dc:creator>Makarov, Eugen</dc:creator> <dcterms:issued>2018</dcterms:issued> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Makarov, Eugen</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43432/3/Makarov_2-l0r8dud5l8z37.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">In this thesis we consider a bicriterial optimal control problem governed by the heat equation with a convection term and bilateral control constraints which arise in HVAC operation of building applications. Furthermore, we allow the convection term to be time-dependent and investigate its influence on the optimal control problem. For this purpose, we apply the Euclidean reference point method, which is a special case of the reference point method, in order to transform the bicriterial optimal control problem into a series of scalar-valued optimal control problems. In order to make the computation effort feasible, we apply the proper orthogonal decomposition method (POD) which is a well-known model-order reduction technique. In the context of this thesis, we derive new a-priori estimates for the approximation error in the objective and control space. In our numerical experiments we analyse the results and compare them with the results for the time-independent convection term. Furthermore, new strategies for efficiently updating the POD basis in the optimization process are proposed and tested numerically.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>POD-Based Bicriterial Optimal Control of Time-Dependent Convection-Diffusion Equations with Basis Update</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-08T07:20:13Z</dcterms:available> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
University note
Konstanz, Universität Konstanz, Master thesis, 2018