Anisotropic Thermal Magnetoresistance for an Active Control of Radiative Heat Transfer
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The discovery that the near-field radiative heat transfer enables to overcome the limit set by Planck’s law holds the promise to have an impact in different nanotechnologies that make use of thermal radiation, and the challenge now is to find strategies to actively control and manipulate this near-field thermal radiation. Here, we predict a huge anisotropic thermal magnetoresistance (ATMR) in the near-field radiative heat transfer between magneto-optical particles when the direction of an external magnetic field is changed with respect to the heat current direction. We illustrate this effect with the case of two InSb particles where we find that the ATMR amplitude can reach values of up to 800% for a magnetic field of 5 T, which is many orders of magnitude larger than its spintronic analogue. This thermomagnetic effect could find broad applications in the field of ultrafast thermal management as well as magnetic and thermal remote sensing.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ABRAHAM EKEROTH, Ricardo M., Philippe BEN-ABDALLAH, Juan Carlos CUEVAS, Antonio GARCÍA-MARTÍN, 2018. Anisotropic Thermal Magnetoresistance for an Active Control of Radiative Heat Transfer. In: ACS Photonics. 2018, 5(3), pp. 705-710. eISSN 2330-4022. Available under: doi: 10.1021/acsphotonics.7b01223BibTex
@article{AbrahamEkeroth2018-03-21Aniso-42116, year={2018}, doi={10.1021/acsphotonics.7b01223}, title={Anisotropic Thermal Magnetoresistance for an Active Control of Radiative Heat Transfer}, number={3}, volume={5}, journal={ACS Photonics}, pages={705--710}, author={Abraham Ekeroth, Ricardo M. and Ben-Abdallah, Philippe and Cuevas, Juan Carlos and García-Martín, Antonio} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42116"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-20T09:42:03Z</dcterms:available> <dc:contributor>Cuevas, Juan Carlos</dc:contributor> <dc:creator>Abraham Ekeroth, Ricardo M.</dc:creator> <dc:language>eng</dc:language> <dc:creator>Ben-Abdallah, Philippe</dc:creator> <dcterms:issued>2018-03-21</dcterms:issued> <dc:creator>García-Martín, Antonio</dc:creator> <dc:contributor>García-Martín, Antonio</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:abstract xml:lang="eng">The discovery that the near-field radiative heat transfer enables to overcome the limit set by Planck’s law holds the promise to have an impact in different nanotechnologies that make use of thermal radiation, and the challenge now is to find strategies to actively control and manipulate this near-field thermal radiation. Here, we predict a huge anisotropic thermal magnetoresistance (ATMR) in the near-field radiative heat transfer between magneto-optical particles when the direction of an external magnetic field is changed with respect to the heat current direction. We illustrate this effect with the case of two InSb particles where we find that the ATMR amplitude can reach values of up to 800% for a magnetic field of 5 T, which is many orders of magnitude larger than its spintronic analogue. This thermomagnetic effect could find broad applications in the field of ultrafast thermal management as well as magnetic and thermal remote sensing.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-20T09:42:03Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42116"/> <dcterms:title>Anisotropic Thermal Magnetoresistance for an Active Control of Radiative Heat Transfer</dcterms:title> <dc:contributor>Ben-Abdallah, Philippe</dc:contributor> <dc:creator>Cuevas, Juan Carlos</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Abraham Ekeroth, Ricardo M.</dc:contributor> </rdf:Description> </rdf:RDF>