Publikation: Reconstruction of unknown monotone nonlinear operators in semilinear elliptic models using optimal inputs
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Physical models often contain unknown functions and relations. The goal of our work is to answer the question of how one should excite or control a system under consideration in an appropriate way to be able to reconstruct an unknown nonlinear relation. To answer this question, we propose a greedy reconstruction algorithm within an offline-online strategy. We apply this strategy to a two-dimensional semilinear elliptic model. Our identification is based on the application of several space-dependent excitations (also called controls). These specific controls are designed by the algorithm in order to obtain a deeper insight into the underlying physical problem and a more precise reconstruction of the unknown relation. We perform numerical simulations that demonstrate the effectiveness of our approach which is not limited to the current type of equation. Since our algorithm provides not only a way to determine unknown operators by existing data but also protocols for new experiments, it is a holistic concept to tackle the problem of improving physical models.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BARTSCH, Jan, Simon BUCHWALD, Gabriele CIARAMELLA, Stefan VOLKWEIN, 2025. Reconstruction of unknown monotone nonlinear operators in semilinear elliptic models using optimal inputs. In: Mathematical Control and Related Fields. American Institute of Mathematical Sciences (AIMS). ISSN 2156-8472. eISSN 2156-8499. Verfügbar unter: doi: 10.3934/mcrf.2025011BibTex
@article{Bartsch2025Recon-72592, title={Reconstruction of unknown monotone nonlinear operators in semilinear elliptic models using optimal inputs}, year={2025}, doi={10.3934/mcrf.2025011}, issn={2156-8472}, journal={Mathematical Control and Related Fields}, author={Bartsch, Jan and Buchwald, Simon and Ciaramella, Gabriele and Volkwein, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72592"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-07T07:36:25Z</dcterms:available> <dcterms:title>Reconstruction of unknown monotone nonlinear operators in semilinear elliptic models using optimal inputs</dcterms:title> <dc:language>eng</dc:language> <dc:contributor>Buchwald, Simon</dc:contributor> <dcterms:abstract>Physical models often contain unknown functions and relations. The goal of our work is to answer the question of how one should excite or control a system under consideration in an appropriate way to be able to reconstruct an unknown nonlinear relation. To answer this question, we propose a greedy reconstruction algorithm within an offline-online strategy. We apply this strategy to a two-dimensional semilinear elliptic model. Our identification is based on the application of several space-dependent excitations (also called controls). These specific controls are designed by the algorithm in order to obtain a deeper insight into the underlying physical problem and a more precise reconstruction of the unknown relation. We perform numerical simulations that demonstrate the effectiveness of our approach which is not limited to the current type of equation. Since our algorithm provides not only a way to determine unknown operators by existing data but also protocols for new experiments, it is a holistic concept to tackle the problem of improving physical models.</dcterms:abstract> <dc:contributor>Ciaramella, Gabriele</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-07T07:36:25Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Buchwald, Simon</dc:creator> <dc:creator>Volkwein, Stefan</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Bartsch, Jan</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72592"/> <dc:contributor>Bartsch, Jan</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Ciaramella, Gabriele</dc:creator> <dc:contributor>Volkwein, Stefan</dc:contributor> <dcterms:issued>2025</dcterms:issued> </rdf:Description> </rdf:RDF>