Constructing Fuzzy Graphs from Examples
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Methods to build function approximators from example data have gained considerable interest in the past. Especially methodologies that build models that allow an interpretation have attracted attention. Most existing algorithms, however, are either complicated to use or infeasible for high-dimensional problems. This article presents an efficient and easy to use algorithm to construct fuzzy graphs from example data. The resulting fuzzy graphs are based on locally independent fuzzy rules that operate solely on selected, important attributes. This enables the application of these fuzzy graphs also to problems in high dimensional spaces. Using illustrative examples and a real world data set it is demonstrated how the resulting fuzzy graphs offer quick insights into the structure of the example data, that is, the underlying model. The underlying algorithm is demonstrated using several Java applets, which can be found under "Electronic annexes" on www.elsevier.com/locate/ida.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERTHOLD, Michael R., Klaus-Peter HUBER, 1999. Constructing Fuzzy Graphs from Examples. In: Intelligent Data Analysis. 1999, 3(1), pp. 37-53. Available under: doi: 10.1016/S1088-467X(99)00004-9BibTex
@article{Berthold1999Const-5413, year={1999}, doi={10.1016/S1088-467X(99)00004-9}, title={Constructing Fuzzy Graphs from Examples}, number={1}, volume={3}, journal={Intelligent Data Analysis}, pages={37--53}, author={Berthold, Michael R. and Huber, Klaus-Peter} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5413"> <dc:language>eng</dc:language> <dc:format>application/pdf</dc:format> <dcterms:issued>1999</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Berthold, Michael R.</dc:contributor> <dcterms:bibliographicCitation>First publ. in: Intelligent Data Analysis 3 (1999), 1, pp. 37-53</dcterms:bibliographicCitation> <dc:creator>Berthold, Michael R.</dc:creator> <dcterms:abstract xml:lang="eng">Methods to build function approximators from example data have gained considerable interest in the past. Especially methodologies that build models that allow an interpretation have attracted attention. Most existing algorithms, however, are either complicated to use or infeasible for high-dimensional problems. This article presents an efficient and easy to use algorithm to construct fuzzy graphs from example data. The resulting fuzzy graphs are based on locally independent fuzzy rules that operate solely on selected, important attributes. This enables the application of these fuzzy graphs also to problems in high dimensional spaces. Using illustrative examples and a real world data set it is demonstrated how the resulting fuzzy graphs offer quick insights into the structure of the example data, that is, the underlying model. The underlying algorithm is demonstrated using several Java applets, which can be found under "Electronic annexes" on www.elsevier.com/locate/ida.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5413"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:title>Constructing Fuzzy Graphs from Examples</dcterms:title> <dc:creator>Huber, Klaus-Peter</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5413/1/BeHu99_fuzzygraph_idaij.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:09Z</dcterms:available> <dc:contributor>Huber, Klaus-Peter</dc:contributor> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5413/1/BeHu99_fuzzygraph_idaij.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:09Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>