Publikation:

Constructing Fuzzy Graphs from Examples

Lade...
Vorschaubild

Dateien

BeHu99_fuzzygraph_idaij.pdf
BeHu99_fuzzygraph_idaij.pdfGröße: 225.48 KBDownloads: 1482

Datum

1999

Autor:innen

Huber, Klaus-Peter

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Intelligent Data Analysis. 1999, 3(1), pp. 37-53. Available under: doi: 10.1016/S1088-467X(99)00004-9

Zusammenfassung

Methods to build function approximators from example data have gained considerable interest in the past. Especially methodologies that build models that allow an interpretation have attracted attention. Most existing algorithms, however, are either complicated to use or infeasible for high-dimensional problems. This article presents an efficient and easy to use algorithm to construct fuzzy graphs from example data. The resulting fuzzy graphs are based on locally independent fuzzy rules that operate solely on selected, important attributes. This enables the application of these fuzzy graphs also to problems in high dimensional spaces. Using illustrative examples and a real world data set it is demonstrated how the resulting fuzzy graphs offer quick insights into the structure of the example data, that is, the underlying model. The underlying algorithm is demonstrated using several Java applets, which can be found under "Electronic annexes" on www.elsevier.com/locate/ida.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Fuzzy Graphs, Learning, Rule Extraction, Function Approximation, Interpretation

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690BERTHOLD, Michael R., Klaus-Peter HUBER, 1999. Constructing Fuzzy Graphs from Examples. In: Intelligent Data Analysis. 1999, 3(1), pp. 37-53. Available under: doi: 10.1016/S1088-467X(99)00004-9
BibTex
@article{Berthold1999Const-5413,
  year={1999},
  doi={10.1016/S1088-467X(99)00004-9},
  title={Constructing Fuzzy Graphs from Examples},
  number={1},
  volume={3},
  journal={Intelligent Data Analysis},
  pages={37--53},
  author={Berthold, Michael R. and Huber, Klaus-Peter}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5413">
    <dc:language>eng</dc:language>
    <dc:format>application/pdf</dc:format>
    <dcterms:issued>1999</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dcterms:bibliographicCitation>First publ. in: Intelligent Data Analysis 3 (1999), 1, pp. 37-53</dcterms:bibliographicCitation>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dcterms:abstract xml:lang="eng">Methods to build function approximators from example data have gained considerable interest in the past. Especially methodologies that build models that allow an interpretation have attracted attention. Most existing algorithms, however, are either complicated to use or infeasible for high-dimensional problems. This article presents an efficient and easy to use algorithm to construct fuzzy graphs from example data. The resulting fuzzy graphs are based on locally independent fuzzy rules that operate solely on selected, important attributes. This enables the application of these fuzzy graphs also to problems in high dimensional spaces. Using illustrative examples and a real world data set it is demonstrated how the resulting fuzzy graphs offer quick insights into the structure of the example data, that is, the underlying model. The underlying algorithm is demonstrated using several Java applets, which can be found under "Electronic annexes" on www.elsevier.com/locate/ida.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5413"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:title>Constructing Fuzzy Graphs from Examples</dcterms:title>
    <dc:creator>Huber, Klaus-Peter</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5413/1/BeHu99_fuzzygraph_idaij.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:09Z</dcterms:available>
    <dc:contributor>Huber, Klaus-Peter</dc:contributor>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5413/1/BeHu99_fuzzygraph_idaij.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:09Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen