Fuzzy Subgroup Mining for Gene Associations

Lade...
Vorschaubild
Dateien
Ortolani_244050.pdf
Ortolani_244050.pdfGröße: 10.63 MBDownloads: 338
Datum
2004
Autor:innen
Ortolani, Marco
Callan, Ondine
Patterson, David E.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04.. IEEE, 2004, pp. 560-565 Vol.2. ISBN 0-7803-8376-1. Available under: doi: 10.1109/NAFIPS.2004.1337362
Zusammenfassung

When studying the therapeutic efficacy of potential new drugs, it would be much more efficient to use predictors in order to assess their toxicity before going into clinical trials. One promising line of research has focused on the discovery of sets of candidate gene profiles to be used as toxicity indicators in future drug development. In particular genomic microarrays may be used to analyze the causality relationship between the administration of the drugs and the so-called gene expression, a parameter typically used by biologists to measure its influence at gene level. This kind of experiments involves a high throughput analysis of noisy and particularly unreliable data, which makes the application of many data mining techniques very difficult. In this paper we explore a fuzzy formulation of the a priori algorithm, a technique whose crisp version is commonly used to mine for subgroups in large datasets; the purpose is to extend the original method, already suitable to deal with large amount of data, in a way that naturally allows the user to deal with the intrinsic imprecision in the data. The algorithm is tested on real data coming from experimental genomic data.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04., 27. Juni 2004 - 30. Juni 2004, Banff, Alta., Canada
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690ORTOLANI, Marco, Ondine CALLAN, Michael R. BERTHOLD, David E. PATTERSON, 2004. Fuzzy Subgroup Mining for Gene Associations. IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04.. Banff, Alta., Canada, 27. Juni 2004 - 30. Juni 2004. In: IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04.. IEEE, 2004, pp. 560-565 Vol.2. ISBN 0-7803-8376-1. Available under: doi: 10.1109/NAFIPS.2004.1337362
BibTex
@inproceedings{Ortolani2004Fuzzy-24405,
  year={2004},
  doi={10.1109/NAFIPS.2004.1337362},
  title={Fuzzy Subgroup Mining for Gene Associations},
  isbn={0-7803-8376-1},
  publisher={IEEE},
  booktitle={IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04.},
  pages={560--565 Vol.2},
  author={Ortolani, Marco and Callan, Ondine and Berthold, Michael R. and Patterson, David E.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24405">
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24405/2/Ortolani_244050.pdf"/>
    <dc:creator>Ortolani, Marco</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Callan, Ondine</dc:contributor>
    <dcterms:abstract xml:lang="eng">When studying the therapeutic efficacy of potential new drugs, it would be much more efficient to use predictors in order to assess their toxicity before going into clinical trials. One promising line of research has focused on the discovery of sets of candidate gene profiles to be used as toxicity indicators in future drug development. In particular genomic microarrays may be used to analyze the causality relationship between the administration of the drugs and the so-called gene expression, a parameter typically used by biologists to measure its influence at gene level. This kind of experiments involves a high throughput analysis of noisy and particularly unreliable data, which makes the application of many data mining techniques very difficult. In this paper we explore a fuzzy formulation of the a priori algorithm, a technique whose crisp version is commonly used to mine for subgroups in large datasets; the purpose is to extend the original method, already suitable to deal with large amount of data, in a way that naturally allows the user to deal with the intrinsic imprecision in the data. The algorithm is tested on real data coming from experimental genomic data.</dcterms:abstract>
    <dc:contributor>Patterson, David E.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2004</dcterms:issued>
    <dc:contributor>Ortolani, Marco</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-12T13:14:45Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-12T13:14:45Z</dcterms:available>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dc:creator>Patterson, David E.</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24405/2/Ortolani_244050.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24405"/>
    <dc:creator>Callan, Ondine</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Fuzzy Subgroup Mining for Gene Associations</dcterms:title>
    <dcterms:bibliographicCitation>NAFIPS 2004 : 2004 Annual Meeting of the North American Fuzzy Information Processing Society ; fuzzy sets in the heart of the Canadian Rockies, Banff, Alberta, Canada, June 27 - 30, 2004 / Scott Dick (ed.). -  Piscataway, NJ : IEEE Operations Center, 2004. - S. 560-565. - ISBN 0-7803-8376-1</dcterms:bibliographicCitation>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen