Geo-Spatial Data Viewer: From Familiar Land-covering to Arbitrary Distorted Geo-Spatial Quadtree Maps
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In many application domains, data is collected and referenced by its geo-spatial location. Spatial data mining, or the discovery of interesting patterns in such databases, is an important capability in the development of database systems. A noteworthy trend is the increasing size of data sets in common use, such as records of business transactions, environmental data and census demographics. These data sets often contain millions of records, or even far more. This situation creates new challenges in coping with scale. In this paper we propose a novel pixel-oriented visual data mining approach for large spatial datasets. It combines a quadtree based distortion of map regions and a local reposition of pixels within these map regions to avoid overlap in the display. Experiments shows that it produces visualizations of large data sets for the discovery of local correlations, and is practical for exploring geography-related statistical information in a variety of applications including population demographics, epidemiology, and marketing.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KEIM, Daniel A., Christian PANSE, Jörn SCHNEIDEWIND, Mike SIPS, 2004. Geo-Spatial Data Viewer: From Familiar Land-covering to Arbitrary Distorted Geo-Spatial Quadtree Maps. WSCG. University of West Bohemia, Campus Bory, Plzen, Czech Republic, 2. Feb. 2004 - 6. Feb. 2004. In: WSCG 2004, The 12-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, February 2 - 6, University of West Bohemia, Campus Bory, Plzen, Czech Republic, May/Jun, 2004. 2004BibTex
@inproceedings{Keim2004GeoSp-5652, year={2004}, title={Geo-Spatial Data Viewer: From Familiar Land-covering to Arbitrary Distorted Geo-Spatial Quadtree Maps}, booktitle={WSCG 2004, The 12-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, February 2 - 6, University of West Bohemia, Campus Bory, Plzen, Czech Republic, May/Jun, 2004}, author={Keim, Daniel A. and Panse, Christian and Schneidewind, Jörn and Sips, Mike} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5652"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:31Z</dcterms:available> <dc:contributor>Sips, Mike</dc:contributor> <dcterms:abstract xml:lang="eng">In many application domains, data is collected and referenced by its geo-spatial location. Spatial data mining, or the discovery of interesting patterns in such databases, is an important capability in the development of database systems. A noteworthy trend is the increasing size of data sets in common use, such as records of business transactions, environmental data and census demographics. These data sets often contain millions of records, or even far more. This situation creates new challenges in coping with scale. In this paper we propose a novel pixel-oriented visual data mining approach for large spatial datasets. It combines a quadtree based distortion of map regions and a local reposition of pixels within these map regions to avoid overlap in the display. Experiments shows that it produces visualizations of large data sets for the discovery of local correlations, and is practical for exploring geography-related statistical information in a variety of applications including population demographics, epidemiology, and marketing.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5652/1/WSCG04_GSDV.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>Sips, Mike</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5652/1/WSCG04_GSDV.pdf"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Schneidewind, Jörn</dc:contributor> <dc:creator>Schneidewind, Jörn</dc:creator> <dc:creator>Panse, Christian</dc:creator> <dc:contributor>Panse, Christian</dc:contributor> <dcterms:title>Geo-Spatial Data Viewer: From Familiar Land-covering to Arbitrary Distorted Geo-Spatial Quadtree Maps</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2004</dcterms:issued> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:bibliographicCitation>First publ. as paper presented to: WSCG 2004, The 12-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, February 2 - 6, University of West Bohemia, Campus Bory, Plzen, Czech Republic, May/Jun, 2004</dcterms:bibliographicCitation> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5652"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:format>application/pdf</dc:format> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:31Z</dc:date> </rdf:Description> </rdf:RDF>