Publikation:

Geo-Spatial Data Viewer: From Familiar Land-covering to Arbitrary Distorted Geo-Spatial Quadtree Maps

Lade...
Vorschaubild

Dateien

WSCG04_GSDV.pdf
WSCG04_GSDV.pdfGröße: 1.6 MBDownloads: 105

Datum

2004

Autor:innen

Panse, Christian
Schneidewind, Jörn
Sips, Mike

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

WSCG 2004, The 12-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, February 2 - 6, University of West Bohemia, Campus Bory, Plzen, Czech Republic, May/Jun, 2004. 2004

Zusammenfassung

In many application domains, data is collected and referenced by its geo-spatial location. Spatial data mining, or the discovery of interesting patterns in such databases, is an important capability in the development of database systems. A noteworthy trend is the increasing size of data sets in common use, such as records of business transactions, environmental data and census demographics. These data sets often contain millions of records, or even far more. This situation creates new challenges in coping with scale. In this paper we propose a novel pixel-oriented visual data mining approach for large spatial datasets. It combines a quadtree based distortion of map regions and a local reposition of pixels within these map regions to avoid overlap in the display. Experiments shows that it produces visualizations of large data sets for the discovery of local correlations, and is practical for exploring geography-related statistical information in a variety of applications including population demographics, epidemiology, and marketing.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

WSCG, 2. Feb. 2004 - 6. Feb. 2004, University of West Bohemia, Campus Bory, Plzen, Czech Republic
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KEIM, Daniel A., Christian PANSE, Jörn SCHNEIDEWIND, Mike SIPS, 2004. Geo-Spatial Data Viewer: From Familiar Land-covering to Arbitrary Distorted Geo-Spatial Quadtree Maps. WSCG. University of West Bohemia, Campus Bory, Plzen, Czech Republic, 2. Feb. 2004 - 6. Feb. 2004. In: WSCG 2004, The 12-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, February 2 - 6, University of West Bohemia, Campus Bory, Plzen, Czech Republic, May/Jun, 2004. 2004
BibTex
@inproceedings{Keim2004GeoSp-5652,
  year={2004},
  title={Geo-Spatial Data Viewer: From Familiar Land-covering to Arbitrary Distorted Geo-Spatial Quadtree Maps},
  booktitle={WSCG 2004, The 12-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, February 2 - 6, University of West Bohemia, Campus Bory, Plzen, Czech Republic, May/Jun, 2004},
  author={Keim, Daniel A. and Panse, Christian and Schneidewind, Jörn and Sips, Mike}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5652">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:31Z</dcterms:available>
    <dc:contributor>Sips, Mike</dc:contributor>
    <dcterms:abstract xml:lang="eng">In many application domains, data is collected and referenced by its geo-spatial location. Spatial data mining, or the discovery of interesting patterns in such databases, is an important capability in the development of database systems. A noteworthy trend is the increasing size of data sets in common use, such as records of business transactions, environmental data and census demographics. These data sets often contain millions of records, or even far more. This situation creates new challenges in coping with scale. In this paper we propose a novel pixel-oriented visual data mining approach for large spatial datasets. It combines a quadtree based distortion of map regions and a local reposition of pixels within these map regions to avoid overlap in the display. Experiments shows that it produces visualizations of large data sets for the discovery of local correlations, and is practical for exploring geography-related statistical information in a variety of applications including population demographics, epidemiology, and marketing.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5652/1/WSCG04_GSDV.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>Sips, Mike</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5652/1/WSCG04_GSDV.pdf"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Schneidewind, Jörn</dc:contributor>
    <dc:creator>Schneidewind, Jörn</dc:creator>
    <dc:creator>Panse, Christian</dc:creator>
    <dc:contributor>Panse, Christian</dc:contributor>
    <dcterms:title>Geo-Spatial Data Viewer: From Familiar Land-covering to Arbitrary Distorted Geo-Spatial Quadtree Maps</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2004</dcterms:issued>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:bibliographicCitation>First publ. as paper presented to: WSCG 2004, The 12-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, February 2 - 6, University of West Bohemia, Campus Bory, Plzen, Czech Republic, May/Jun, 2004</dcterms:bibliographicCitation>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5652"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:format>application/pdf</dc:format>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:31Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen