A theoretical investigation of time-dependent Kohn–Sham equations : new proofs
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper, a new analysis for the existence, uniqueness, and regularity of solutions to a time-dependent Kohn–Sham equation is presented. The Kohn–Sham equation is a nonlinear integral Schrödinger equation that is of great importance in many applications in physics and computational chemistry. To deal with the time-dependent, nonlinear and non-local potentials of the Kohn–Sham equation, the analysis presented in this manuscript makes use of energy estimates, fixed-point arguments, regularization techniques, and direct estimates of the non-local potential terms. The assumptions considered for the time-dependent and nonlinear potentials make the obtained theoretical results suitable to be used also in an optimal control framework.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CIARAMELLA, Gabriele, Martin SPRENGEL, Alfio BORZÌ, 2021. A theoretical investigation of time-dependent Kohn–Sham equations : new proofs. In: Applicable Analysis. Taylor & Francis. 2021, 100(10), pp. 2254-2273. ISSN 0003-6811. eISSN 1563-504X. Available under: doi: 10.1080/00036811.2019.1679792BibTex
@article{Ciaramella2021theor-48645, year={2021}, doi={10.1080/00036811.2019.1679792}, title={A theoretical investigation of time-dependent Kohn–Sham equations : new proofs}, number={10}, volume={100}, issn={0003-6811}, journal={Applicable Analysis}, pages={2254--2273}, author={Ciaramella, Gabriele and Sprengel, Martin and Borzì, Alfio} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48645"> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Ciaramella, Gabriele</dc:creator> <dcterms:abstract xml:lang="eng">In this paper, a new analysis for the existence, uniqueness, and regularity of solutions to a time-dependent Kohn–Sham equation is presented. The Kohn–Sham equation is a nonlinear integral Schrödinger equation that is of great importance in many applications in physics and computational chemistry. To deal with the time-dependent, nonlinear and non-local potentials of the Kohn–Sham equation, the analysis presented in this manuscript makes use of energy estimates, fixed-point arguments, regularization techniques, and direct estimates of the non-local potential terms. The assumptions considered for the time-dependent and nonlinear potentials make the obtained theoretical results suitable to be used also in an optimal control framework.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-02-14T12:46:33Z</dcterms:available> <dc:creator>Borzì, Alfio</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48645"/> <dcterms:issued>2021</dcterms:issued> <dc:contributor>Sprengel, Martin</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-02-14T12:46:33Z</dc:date> <dcterms:title>A theoretical investigation of time-dependent Kohn–Sham equations : new proofs</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Borzì, Alfio</dc:contributor> <dc:creator>Sprengel, Martin</dc:creator> <dc:contributor>Ciaramella, Gabriele</dc:contributor> </rdf:Description> </rdf:RDF>